Phosphole Formation by 1,1-Carboboration - Reactions of Bisalkynyl Phosphanes with a Frustrated P/B Lewis Pair

Annika Klose^a, Gerald Kehr,^a Constantin G. Daniliuc^{a+} and Gerhard Erker^a

^a Organisch-Chemisches Institut der Westfälischen Wilhelms-Universität Münster, Corrensstr. 40, 48149 Münster

⁺X-ray single crystal structure analysis

Supporting Information

General Procedures. All syntheses involving air- and moisture-sensitive compounds were carried out using standard Schlenk-type glassware (or in a glove box) under an atmosphere of argon. Solvents were dried and stored under an argon atmosphere. The following instruments were used for physical characterization of the compounds: NMR spectra: *Varian* Inova 500 (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz, ³¹P: 202 MHz), *Varian* UnityPlus 600 (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ¹¹B: 192 MHz, ³¹P: 243 MHz). ¹H NMR and ¹³C NMR: chemical shift δ is given relative to TMS and referenced to the solvent signal. ¹⁹F NMT: chemical shift δ is given relative to CFCl₃ (external reference); ¹¹B NMR: chemical shift δ is given relative to BF₃·Et₂O (external reference). NMR assignments are supported by additional 2D NMR experiments. Elemental analyses were performed on a *Elementar Vario El III*. IR spectra were recorded on a *Varian* 2100 FT-IR (Excalibur Series). Melting points were obtained with a DSC Q20 (*TA Instruments*).

X-Ray diffraction: Data sets were collected with a Nonius KappaCCD diffractometer. Programs used: data collection, COLLECT (Nonius B.V., 1998); data reduction Denzo-SMN (Z. Otwinowski and W. Minor, *Methods Enzymol.* 1997, 276, 307.); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski and W. Minor, *Acta Crystallogr.* 2003, A59, 228.); structure solution SHELXS-97 (G. M. Sheldrick, *Acta Crystallogr.* 1990, A46, 467.); structure refinement SHELXL-97 (G. M. Sheldrick, *Acta Crystallogr.* 2008, A64, 112.) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability, *R*-values are given for observed reflections, and wR² values are given for all reflections. *Exceptions and special features:* For the compound 5a one badly disordered benzene molecule was found in the asymmetric unit. The program SQUEEZE (A. L. Spek, *J. Appl. Cryst.*, 2003, 36, 7.) was therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecule. For compound 6b one ⁱPr group was found disordered over two positions. Compound 9a presents ^tBu group disordered over

two positions and one dichloromethane molecule in the asymmetric unit. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability.

The CCDC (Cambridge Crystallographic Data Centre) deposition numbers are 1416705 to 1416707. **Materials.** Bis(pentafluorophenyl)borane¹, bis(phenylethynyl)mesitylphosphane² (**1a**), bis(pentynyl)mesitylphosphane² (**1c**), bis(phenylethynyl)(2,4,6-triisopropylphenyl)phosphane² (**1b**), bis(pentynyl) (2,4,6-triisopropylphenyl)phosphane² (**1d**), dimesitylvinylphosphane³ and {2-[bis(pentafluorophenyl)boryl]ethyl}dimesitylphosphane³ (**4**) were prepared according to modified literature procedures.

Reaction of P/B-system 4 with bis(phenylethynyl)mesitylphosphane (1a)

The in situ reaction of the P/B-system **4** (64.2 mg, 0.1 mmol, 1 eq) with bis(phenylethynyl)mesitylphosphane (**1a**) (35.2 mg, 0.1 mmol, 1 eq) in C_6D_6 (1 mL) at 70 °C for 4 hours gave a mixture of compound **2a**, **1a**, **5a** and **6a** (ratio ca. 63 : 20 : 14 : 3 (³¹P)) and traces of not identified compounds.

[Comment: comparable results were obtained using the same amounts of the reactants but the reaction was carried out in toluene (3 mL) at room temperature for 4 days or alternatively in *n*-pentane (3 mL) at 70 °C for one day]

Compound 2a:

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ^{1} H = 7.24 (m, 2H, *o*-Ph⁵), 7.20 (m, 2H, *o*-Ph²), 6.96 (m, 2H, *m*-Ph⁵), 6.85 (m, 1H, *p*-Ph⁵), 6.78 (m, 2H, *m*-Ph²), 6.61 (m, 1H, *p*-Ph²), 6.53 (d, ⁴*J*_{PH} = 2.4 Hz, 4H, *m*-mes), 6.34 (d, ⁴*J*_{PH} = 3.1 Hz, 2H, *m*-mes¹), 2.76 (m, 2H, PCH₂), 2.61 (m, 2H, CH₂), 2.34 (s, 6H, *o*-CH₃^{mes,1}), 2.14 (s, 12H, *o*-CH₃^{mes}), 2.02 (s, 6H, *p*-CH₃^{mes}), 1.68 (s, 3H, *p*-CH₃^{mes,1}).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ^{13} C = 166.9 (br, C2), 151.3 (br, C3), 148.4 (dd, J_{PC} = 17.0 Hz, J_{PC} = 15.3 Hz, C4), 146.3 (d, ${}^{2}J_{PC}$ = 15.4 Hz, *o*-mes¹), 145.4 (d, ${}^{1}J_{PC}$ = 8.3 Hz, C5), 141.7 (d, ${}^{2}J_{PC}$ = 13.3 Hz, *o*-

¹ a) J. D. Parks, R. E. V. H. Spence and W. E. Piers, *Angew. Chem. Int. Ed. Engl.*, 1995, **34**, 809; W. E. Piers, J. D. Parks and G. P. A. Yap, *Organometallics* 1998, **17**, 5492.

² H. Lang and L. Zsolnai, *Chem. Ber.*, 1991, **124**, 259; J. Möbus, Q. Bonnin, K. Ueda, R. Fröhlich, K. Itami, G. Kehr and G. Erker, *Angew. Chem. Int. Ed.* 2012, **51**, 1954; J. Möbus, K. Malessa, H. Frisch, C. G. Daniliuc, R. Fröhlich, G. Kehr and G. Erker, *Heteroat. Chem.*, 2014, **25**, 396.

³ P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S. Grimme and D. W. Stephan, *Chem. Commun.* 2007, 5072.

mes), 141.3 (d, ${}^{4}J_{PC} = 1.8 \text{ Hz}, p\text{-mes}^{1}$), 139.5 (d, ${}^{2}J_{PC} = 15.8 \text{ Hz}, i\text{-Ph}^{2}$), 137.5 (*p*-mes), 136.9 (d, ${}^{2}J_{PC} = 17.9 \text{ Hz}, i\text{-Ph}^{5}$), 132.8 (d, ${}^{1}J_{PC} = 21.1 \text{ Hz}, i\text{-mes}$), 130.3 (d, ${}^{3}J_{PC} = 2.8 \text{ Hz}, m\text{-mes}$), 129.5 (d, ${}^{3}J_{PC} = 6.2 \text{ Hz}, m\text{-mes}^{1}$), 129.3 (d, ${}^{3}J_{PC} = 7.8 \text{ Hz}, o\text{-Ph}^{5}$), 129.2 (d, ${}^{3}J_{PC} = 9.2 \text{ Hz}, o\text{-Ph}^{2}$), 128.7 (*m*-Ph^{5}), 128.4 (*m*-Ph^{2}), 127.9 (*p*-Ph^{2}), 126.8 (*p*-Ph^{5}), 122.7 (d, ${}^{1}J_{PC} = 3.4 \text{ Hz}, i\text{-mes}^{1}$), 31.5 (dd, ${}^{1}J_{PC} = 19.0 \text{ Hz}, J = 4.7 \text{ Hz}, \text{PCH}_{2}$), 27.9 (dm, ${}^{2}J_{PC} = 22.2 \text{ Hz}, \text{CH}_{2}$), 23.0 (d, ${}^{3}J_{PC} = 13.1 \text{ Hz}, o\text{-CH}_{3}^{\text{mes}}$), 22.0 (br d, ${}^{3}J_{PC} = 14.1 \text{ Hz}, o\text{-CH}_{3}^{\text{mes},1}$), 20.8 (*p*-CH₃^{mes,1}), 20.7 (*p*-CH₃^{mes}), [C₆F₅ not listed].

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B$ = 60.5 (v_{1/2} \approx 3000 Hz).

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): δ^{19} F = -128.2 (br m, 2F, *o*-C₆F₅), -146.8 (br, 1F, *p*-C₆F₅), -161.5 (br, 2F, *m*-C₆F₅). [$\Delta\delta^{19}$ F_{p,m} = 14.7].

³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): δ^{31} P = 16.9 ($v_{1/2} \sim 10$ Hz, 1P, P-1), -21.9 ($v_{1/2} \sim 15$ Hz, 1P, Pmes₂).

Compound 6a:

[Characterization by selected NMR experiments and in comparison with compound **6b**]

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B = -7.2$ ($v_{1/2} \approx 150$ Hz).

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): $\delta^{19}F^{t} = -118.9$ (dm, $J_{PF} = 224.2$ Hz), -136.5 (m), -140.4 (m), -142.2 (m)(each 1F, o-C₆F₅), -159.5 (t, ${}^{3}J_{FF} = 20.3$ Hz), -160.9 (t, ${}^{3}J_{FF} = 20.8$ Hz)(each 1F, p-C₆F₅), -163.4 (m), -164.6 (m), -165.2 (m), -165.3 (m)(each 1F, m-C₆F₅), [^t tentative assignment]

³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): $\delta^{31}P = 38.4$ (br d, $J_{PF} = 221.3$ Hz, 1P, Pmes), -6.0 (m, 1P, Pmes₂).

¹H NMR (500 MHz, 299 K, C₆D₆) spectrum of the reaction mixture.

40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -9 $^{31}P{^{1}H}$ NMR (202 MHz, 299 K, C₆D₆) spectrum of the reaction mixture.

Preparation of compound 2a:

A solution of dimesitylvinylphosphane (59 mg, 0.2 mmol, 1 eq) in toluene (2 mL) was added to bis(pentafluorophenyl)borane (69 mg, 0.2 mmol, 1 eq). The obtained solution was stirred for 30 min at room temperature. Subsequently, bis(phenylethynyl)-mesitylphosphane (**1a**) (70 mg, 0.2 mmol, 1 eq) was added to the reaction mixture and the resulting green solution was stirred at room temperature for 4 days. After removal of all volatiles *in vacuo*, the residue was suspended in *n*-pentane (5 mL). The supernatant was separated, dried *in vacuo* to give compound **2a** as a brown solid (93 mg, 0.09 mmol, 47%).

Elemental analysis: calc. for C₅₇H₄₇BF₁₀P₂: C: 68.82, H: 4.76; found: C: 69.16, H: 4.90.

IR (KBr): \tilde{V} [cm⁻¹] = 4376 (w), 3516 (w), 3433 (w), 3020 (w), 2960 (m), 2921 (m), 2731 (w), 2358 (w), 2176 (w), 1643 (w), 1603 (m), 1513 (s), 1457 (s), 1381 (m), 1313 (w), 1269 (m), 1244 (m), 1080 (m), 1028 (w), 969 (m), 850 (m), 754 (m), 698 (s), 639 (w), 554 (w), 503 (w).

Melting point: 118 °C.

[Comment: the ¹H, ¹⁹F, ³¹P NMR resonances of a solution of the brown solid in C_6D_6 were consistent to those given for compound **2a** (*in situ* reaction, see above).]

Characterization of compound 5a

Dimesitylvinylphosphane (30 mg, 0.1 mmol, 1 eq) and bis(pentafluorophenyl)-borane (35 mg, 0.1 mmol, 1 eq) were each dissolved in C_6D_6 (each: 0.5 mL). Then the solution of the phosphane was added to the borane solution and the reaction mixture was stirred

for 15 min before bis(phenylethynyl)mesityl-phosphane (**1a**) (35 mg, 0.1 mmol, 1 eq) was added. The reaction mixture was heated at 70 °C for 2 h. After cooling to room temperature the benzene solution was covered with *n*-pentane (3 mL) and crystalline material was formed. The obtained crystals were suitable for the X-ray structure analysis of compound **5a**.

IR (KBr): \tilde{V} [cm⁻¹] = 3022 (w), 2960 (w), 2923 (w), 2162 (w, $v_{C=C}$), 1950 (w), 1641 (m), 1604 (m), 1557 (w), 1513 (s), 1450 (s), 1382 (m), 1269 (m), 1182 (w), 1082 (s), 1030 (w), 976 (s), 925 (w), 847 (s), 791 (w), 757 (m), 701 (m), 638 (w), 599 (w), 554 (w).

Selected NMR Experiments:

¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): $\delta^{11}B = -12.6 (v_{1/2} \sim 60 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 299 K, CD_2CI_2): $\delta^{19}F = -126.3$ (br, 2F, *o*-C₆F₅), -162.7 (br t, ³J_{FF} = 18.7 Hz, 1F, *p*-C₆F₅), -166.9 (br, 2F, *m*-C₆F₅), [$\Delta\delta^{19}F_{p,m}$ = 4.2].

³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): δ^{31} P = 9.5 ($v_{1/2} \sim 70$ Hz, 1P, Pmes₂), -29.2 ($v_{1/2} \sim 100$ Hz, 1P, Pmes).

X-ray crystal structure analysis of compound 5a: formula $C_{57}H_{47}BF_{10}P_2$, M = 994.70, colourless crystal, 0.18 x 0.14 x 0.12 mm, a = 11.3490(2), b = 12.5217(3), c = 20.7425(4) Å, $\alpha = 103.336(2)$, $\theta = 93.017(2)$, $\gamma = 108.594(1)^\circ$, V = 2692.9(1) Å³, $\rho_{calc} = 1.227$ gcm⁻³, $\mu = 0.151$ mm⁻¹, empirical absorption correction (0.973 $\leq T \leq 0.982$), Z = 2, triclinic, space group $P^{\bar{1}}$ (No. 2), $\lambda = 0.71073$ Å, T = 223(2) K, ω and ϕ scans, 26432 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.59 Å⁻¹, 9162 independent ($R_{int} = 0.048$) and 7876 observed reflections [$I > 2\sigma(I)$], 640 refined parameters, R = 0.057, $wR^2 = 0.160$, max. (min.) residual electron density 0.37 (-0.23) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

-B(C₆F₅)₂ mes₂Pmeso 4 mes₂F $B(C_6F_5)$ Ρh tipp Pł tipp Ρĥ 2b 5b 6b 1b 42 5 10

Reaction of compound 4 with bis(phenylethynyl)(2,4,6-triisopropylphenyl)phosphane (1b)

tipp: 2,4,6-triisopropylphenyl

The *in situ* reaction of the P/B-system **4** (64.2 mg, 0.1 mmol, 1 eq) with bis(phenylethynyl)(2,4,6-triisopropylphenyl)phosphane (**1b**) (43.7 mg, 0.1 mmo, 1 eq) in C_6D_6 (1 mL) at room temperature for 2 days gave a mixture of compound **1b**, **4**, **2b**, **5b** and **6b** (ratio ca. 31 : 12 : 42 : 5 : 10 (³¹P)) and traces of not identified compounds.

[Comment: comparable results were obtained using the same amounts of the reactants but the reaction was carried out in toluene (3 mL) at room temperature for 6 days or alternatively in *n*-pentane (3 mL) at 70 °C for 2.5 days]

Compound 2b:

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ^{1} H = 7.32 (m, 2H, *o*-Ph⁵), 7.25 (m, 2H, *o*-Ph²), 6.95 (m, 2H, *m*-Ph⁵), 6.85 (m, 2H, *m*-tipp), 6.81 (m, 1H, *p*-Ph⁵), 6.76 (m, 2H, *m*-Ph²), 6.57 (m, 1H, *p*-Ph²), 6.52 (dm, ⁴J_{PH} = 2.6 Hz, 4H, *m*-mes), 3.65 (br, 2H, *o*-CH^{*i*Pr}), 2.74 (m, 2H, PCH₂), 2.69 (m, 2H, CH₂), 2.41 (sept, ³J_{HH} = 6.9 Hz, 1H, *p*-CH^{*i*Pr}), 2.14 (s, 12H, *o*-CH₃^{mes}), 2.02 (s, 6H, *p*-CH₃^{mes}), 1.20 (d, ³J_{HH} = 6.9 Hz, *o*-CH₃^{*i*Pr}), 0.84 (d, ³J_{HH} = 6.9 Hz, *p*-CH₃^{*i*Pr}).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ^{13} C = 167.1 (d, ¹J_{PC} = 6.0 Hz, C2), 157.4 (d, ²J_{PC} = 14.3 Hz, *o*-tipp), 152.8 (d, ⁴J_{PC} = 1.8 Hz, *p*-tipp), 150.2 (br d, ²J_{PC} = 14.7 Hz, C3), 147.2 (d, J_{PC} = 11.2 Hz, C5), 147.2 (dd, J_{PC} = 17.8 Hz, J_{PC} = 15.7 Hz, C4), 141.7 (d, ²J_{PC} = 13.4 Hz, *o*-mes), 139.1 (d, ²J_{PC} = 16.4 Hz, *i*-Ph²), 137.5 (*p*-mes), 136.6 (d, ²J_{PC} = 17.7 Hz, *i*-Ph⁵), 132.8 (d, ¹J_{PC} = 21.7 Hz, *i*-mes), 130.9 (d, ³J_{PC} = 7.2 Hz, *m*-tipp), 130.3 (d, ³J_{PC} = 3.0 Hz, *m*-mes), 129.8 (d, ³J_{PC} = 9.3 Hz, *o*-Ph^{2,5}), 128.5 (*m*-Ph⁵), 128.2 (*m*-Ph²), 128.0 (*p*-Ph²), 126.8 (*p*-Ph⁵), 122.6 (d, ³J_{PC} = 6.2 Hz, *m*-tipp), 120.6 (d, ¹J_{PC} = 6.2 Hz, *i*-tipp), 34.2 (*p*-CH^{*i*Pr}), 33.2 (d, ³J_{PC} = 15.8 Hz, *o*-CH^{*i*Pr}), 31.7 (dd, ¹J_{PC} = 19.7 Hz, ⁴J_{PC} = 5.4 Hz, PCH₂), 27.7 (dd, J_{PC} = 22.5 Hz, J_{PC} = 1.6 Hz, CH₂), 25.4, 25.0 (*o*-CH^{*i*Pr}), 23.4 (*p*-CH^{*i*Pr}), 23.0 (d, ³J_{PC} = 13.5 Hz, *o*-CH³^{mes}), 20.7 (*p*-CH³^{mes}), [C₆F₅ not listed].

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B = 60.0 (v_{1/2} \approx 3000 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): δ^{19} F = -128.3 (br m, 2F, *o*-C₆F₅), -146.8 (br, 1F, *p*-C₆F₅), -161.7 (br m, 2F, *m*-C₆F₅), [$\Delta\delta^{19}$ F_{p,m} = 14.9].

Preparation of compound 2b

A solution of dimesitylvinylphosphane (148 mg, 0.5 mmol, 1 eq) in toluene (5 mL) was added to bis(pentafluorophenyl)-borane (173 mg, 0.5 mmol, 1 eq) and the solution was stirred for 1 h. After addition of bis(phenylethynyl)(2,4,6-triisopropyl-phenyl)phosphane (**1b**) (219 mg,

0.5 mmol, 1 eq) the reaction mixture was stirred for 6 days at room temperature, then all volatiles were removed *in vacuo* and the obtained residue suspended in *n*-pentane (5 mL). The supernatant was separated from the solid material and dried *in vacuo* to give compound **2b** as a green solid (300 mg, 0.3 mmol, 57%). (The separated solid material was used for the characterization of compounds **5b** and **6b** (see below).)

Elemental analysis: Calc. for C₆₃H₅₉BF₁₀P₂: C: 70.13, H: 5.51; found: C: 69.54, H: 5.78.

IR (KBr): \tilde{V} [cm⁻¹] = 3020 (w), 2962 (m), 2961 (m), 2868 (m), 2730 (w), 1645 (m), 1603 (m), 1559 (w), 1516 (s), 1473 (s), 1457 (s), 1381 (m), 1312 (m), 1270 (m), 1152 (m), 1080 (s), 1029 (m), 973 (s), 880 (w), 851 (w), 752 (m), 699 (s), 641 (m), 554 (w).

Melting point: 154 °C.

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): δ^{11} B = 60.0 (v_{1/2} \approx 2900 Hz).

¹⁹**F NMR** (470 MHz, 299 K, C_6D_6): $\delta^{19}F = -128.4$ (m, 2F, *o*- C_6F_5), -146.8 (br, 1F, *p*- C_6F_5), -161.7 (m, 2F, *m*- C_6F_5), $[\Delta\delta^{19}F_{p,m} = 14.9]$.

³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): δ^{31} P = 10.8 ($v_{1/2}$ ~ 25 Hz, 1P, P-1), -21.9 ($v_{1/2}$ ~ 30 Hz, 1P, Pmes₂).

Characterization of compound 5b and 6b

The solution of the solid obtained from the preparation of compound **2b** (see above) in C_6D_6 showed a mixture of compounds **5b** and **6b** (ratio ca. 1 : 1 (³¹P)).

Compound 5b:

[Characterization by selected NMR experiments and in comparison with compound 5a]

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B = -12.1 (v_{1/2} \sim 150 \text{ Hz}).$

¹⁹**F** NMR (470 MHz, 299 K, C₆D₆): δ^{19} F = -120.8, -124.0, -126.2, -127.2 (each br, each 1F, *o*-C₆F₅), -161.6 (br, 1F, *p*-C₆F₅), -165.8 (br, 2F, *m*-C₆F₅), [$\Delta\delta^{19}$ F_{p,m} = 4.2].

³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): δ^{31} P = 9.0 ($\nu_{1/2} \sim 130$ Hz, 1P, Pmes₂), -33.1 ($\nu_{1/2} \sim 150$ Hz, 1P, P-tipp).

Compound 6b:

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ^{1} H = 7.52 (m, 2H, *o*-Ph⁴), 7.06 (br m, 2H, *o*-Ph⁶), 6.83 (m, 1H, *m*'-tipp), 6.82 (m, 2H, *m*-Ph⁴), 6.69 (m, 1H, *p*-Ph⁴), 6.68 (dm, ⁴J_{PH} = 5.4 Hz, 1H, *m*-tipp), 6.60 (m, 2H, *m*-Ph⁶), 6.56 (m, 1H, *m*-mes^a), 6.54 (m, 1H, *p*-Ph⁶), 6.30 (d, ⁴J_{PH} = 3.4 Hz, 1H, *m*-mes^b), 6.25 (d, ⁴J_{PH} = 3.7 Hz, 1H, *m*'-mes^b), 6.03 (br, 1H, *m*'-mes^a), 4.59 (dsept, ⁴J_{PH} = 12.9 Hz, ³J_{HH} = 6.8 Hz, 1H, *o*-CH^{iPr}), 4.35 (sept, ³J_{HH} = 6.7 Hz, 1H, *o*-CH^{iPr}), 3.56, 2.65 (each m, each 1H, PCH₂), 2.91 (s, 3H, *o*-CH₃^{mes,b}), 2.25, 1.32 (each m, each 1H, BCH₂), 2.60 (s, 3H, *o*-CH₃^{mes,a}), 2.54 (sept, ³J_{HH} = 6.7 Hz, 1H, *p*-CH^{iPr}), 1.85 (s, 3H, *p*-CH₃^{mes,b}), 1.80 (s, 3H, *p*-CH₃^{Mes,a}), 1.54, 1.51 (each d, ³J_{HH} = 6.6 Hz, each 3H, *o*'-CH₃^{iPr}), 1.49 (s, 3H, *o*'-CH₃^{mes,b}), 1.22, 1.09 (each d, ³J_{HH} = 6.8 Hz, each 3H, *o*-CH₃^{iPr}), 1.04 (s, 3H, *o*'-CH₃^{mes,a}), 1.02 (d, ³J_{HH} = 7.0 Hz, 6H, *p*-CH₃^{iPr}).

¹³C{¹H} NMR (126 MHz, 299 K, C₆D₆): δ^{13} C = 157.1 (d, ²J_{PC} = 34.7 Hz, *o*-tipp), 155.4 (dd, *J* = 5.1 Hz, *J* = 2.4 Hz, *o'*-tipp), 150.5 (d, ⁴J_{PC} = 7.2 Hz, *p*-tipp), 148.6 (br d, ¹J_{PC} = 3.5 Hz, C4), 144.0 (d, ²J_{PC} = 7.8 Hz, *o'*-mes^a), 142.4 (d, ⁴J_{PC} = 2.6 Hz, *p*-mes^a), 141.9 (d, ²J_{PC} = 9.9 Hz, *o*-mes^b), 141.73 (d, ²J_{PC} = 10.1 Hz, *o*-mes^a), 141.66 (d, ⁴J_{PC} = 3.1 Hz, *p*-mes^b), 140.5 (d, ²J_{PC} = 9.6 Hz, *o'*-mes^b), 139.7 (d, ²J_{PC} = 23.5 Hz, *i*-Ph⁴), 139.1 (dd, ²J_{PC} = 16.7 Hz, ³J_{PC} = 2.5 Hz, *i*-Ph⁶), 131.9 (d, ³J_{PC} = 11.0 Hz, *m'*-mes^b), 131.7 (d, ³J_{PC} = 10.6 Hz, *m*-mes^a), 131.4 (d, ³J_{PC} = 10.3 Hz, *m'*-mes^a), 130.4 (d, ³J_{PC} = 11.0 Hz, *m*-mes^b), 130.3 (*o*-Ph⁴), 129.2 (dd, ¹J_{PC} = 77.9 Hz, *J* = 4.1 Hz, *i*-mes^b), 128.8 (d, ³J_{PC} = 7.0 Hz, *o*-Ph⁴), 127.8 (*m*-Ph⁴), 127.4 (*m*-Ph⁶), 127.1

(dd, ${}^{1}J_{PC}$ = 29.2 Hz, J = 8.8 Hz, *i*-tipp), 126.8 (*p*-Ph⁶), 126.8 (*p*-Ph⁴), 123.6 (dd, ${}^{1}J_{PC}$ = 73.7 Hz, J = 3.6 Hz, *i*-mes^a), 121.5 (d, ${}^{3}J_{PC}$ = 7.8 Hz, *m*-tipp), 121.2 (d, ${}^{3}J_{PC}$ = 4.6 Hz, *m*'-tipp), 116.2 (dd, ${}^{1}J_{PC}$ = 62.9 Hz, ${}^{2}J_{PC}$ = 16.2 Hz, C6), 34.4 (*p*-CH^{*i*Pr}), 32.28 (d, ${}^{3}J_{PC}$ = 36.8 Hz, *o*-CH^{*i*Pr}), 32.27 (*o*'-CH^{*i*Pr}), 30.4 (br d, ${}^{1}J_{PC}$ = 48.3 Hz, J = 4.0 Hz, PCH₂), 28.8 (br d, J_{PC} = 44.1 Hz, CH₂), 28.1 (d, ${}^{4}J_{PC}$ = 2.5 Hz), 25.9 (*o*'-CH₃^{*i*Pr}), 27.4, 23.7 (*o*-CH₃^{*i*Pr}), 25.0 (d, ${}^{3}J_{PC}$ = 4.5 Hz, *o*-CH₃^{mes,a}), 23.8 (m, *o*-CH₃^{mes,b}), 23.9 (*p*-CH₃^{*i*Pr}), 22.8 (d, ${}^{3}J_{PC}$ = 5.2 Hz, *o*'-CH₃^{mes,a}), 22.7 (d, ${}^{3}J_{PC}$ = 3.6 HZ, *o*'-CH₃^{mes,b}), 20.2 (d, ${}^{5}J_{PC}$ = 1.5 Hz, *p*-CH₃^{mes,b}), 20.5 (d, ${}^{5}J_{PC}$ = 1.3 Hz, *p*-CH₃^{mes,a}). [C₆F₅ not listed, C3,5 not located]

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B = -6.7 (v_{1/2} \approx 140 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, C_6D_6): $\delta^{19}F = -118.2$ (dm, $J_{PF} = 226.3$ Hz, o), -136.1 (m, o'), -161.1 (t, ${}^{3}J_{FF} = 20.8$ Hz, p), -164.6 (m, m), -165.6 (m, m')(each 1F, BC_6F_5)[$\Delta\delta^{19}F_{p,m} = 3.5$, 4.5], -140.8 (m, o), -141.5 (m, o'), -159.7 (t, ${}^{3}J_{FF} = 21.2$ Hz, p), -163.8 (m, m'), -165.1 (m, m)(each 1F, C_6F_5)[$\Delta\delta^{19}F_{p,m} = 4.1$, 5.4]. ³¹P{¹H} **NMR** (202 MHz, 299 K, C_6D_6): $\delta^{31}P = 32.7$ (dd, $J_{PF} = 226.1$ Hz, ${}^{3}J_{PP} = 9.8$ Hz, 1P, P-tipp), -4.2 (dm, ${}^{3}J_{PP} = 9.8$ Hz, 1P, Pmes₂).

158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 ${}^{13}C{}^{1}H$ NMR (126 MHz, 299 K, C_6D_6) spectrum of the mixture of compounds **5b** and **6b**.

 $^{11}\text{B}\{^{1}\text{H}\}$ NMR (160 MHz, 299 K, C₆D₆) spectra of the mixture of compounds **5b** and **6b**.

glass

-10

-20

-30

-40

 $^{31}P{^{1}H} NMR$ and $^{31}P{^{19}F} NMR$ (243 MHz, 299 K, C₆D₆) spectra of the mixture of compounds **5b** and

6b.

Isolation of compound 6b

A solution of dimesitylvinylphosphane (30 mg, 0.1 mmol, 1 eq) in *n*-pentane (2 mL) was added to bis(pentafluorophenyl)borane (35 mg, 0.1 mmol, 1 eq) and the solution was stirred for 30 min. After addition of bis(phenylethynyl)(2,4,6-triisopropylphenyl)phosphane (**1b**) (44 mg, 0.1 mmol, 1 eq) the reaction mixture was heated at 70 °C for 2.5 h. After standing at room temperature for

2 days compound **6b** was obtained as yellow crystalline material (15 mg, 7%). Crystals suitable for Xray crystal structure analysis were obtained from a *n*-pentane (2 mL) solution of the *in situ* reaction mixture at -34 °C.

Elemental analysis: calc. for C₆₃H₅₉BF₁₀P₂: C: 70.13, H: 5.51; found: C: 70.08, H: 5.52.

IR (KBr): v [cm⁻¹] = 2966 (w), 2932 (w), 2871 (w), 1604 (m), 1552 (w), 1514 (s), 1486 (m), 1444 (s); 1381 (m), 1266 (m), 1075 (s), 1028 (m), 980 (s), 961 (s), 930 (m), 844 (m), 796 (m), 754 (s), 701 (s), 642 (m), 601 (m).

Melting point: 182 °C.

The solution of the crystalline material in C_6D_6 showed a mixture of compounds **5b** and **6b** (ratio ca. 24 : 76 (³¹P)).

¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): $\delta^{11}B = -6.8$ ($v_{1/2} \approx 140$ Hz).

¹⁹**F NMR** (470 MHz, 299 K, C₆D₆): δ^{19} F = -118.2 (dm, J_{PF} = 226 Hz, 1F, *o*), -136.2 (m, 1F, *o'*), -161.0 (t, ³J_{FF} = 20.8 Hz, 1F, *p*), -164.5 (m, 1F, *m*), -165.5 (m, 1F, *m'*) (BC₆F₅)[$\Delta\delta^{19}$ F_{p,m} = 3.5, 4.5], -140.9 (m, 1F, *o*), -141.5 (m, 1F, *o'*), -159.5 (t, ³J_{FF} = 21.2 Hz, 1F, *p*), -163.7 (m, 1F, *m'*), -165.1 (m, 1F, *m*)(C₆F₅)

³¹P{¹H} NMR (202 MHz, 299 K, C₆D₆): $\delta^{31}P = 32.7$ (dd, $J_{PF} = 225.3$ Hz, ${}^{3}J_{PP} = 9.8$ Hz, 1P, P-tipp), -4.3 (dm, ${}^{3}J_{PP} = 9.8$ Hz, 1P, Pmes₂).

X-ray crystal structure analysis of compound 6b: formula $C_{63}H_{59}BF_{10}P_2$, M = 1078.85, yellow crystal, 0.15 x 0.07 x 0.03 mm, a = 13.8113(5), b = 14.0951(5), c = 16.4458(9) Å, $\alpha = 97.778(2)$, $\beta = 99.423(2)$, $\gamma = 118.030(3)^\circ$, V = 2703.8(2) Å³, $\rho_{calc} = 1.325$ gcm⁻³, $\mu = 1.325$ mm⁻¹, empirical absorption correction (0.821 $\leq T \leq 0.960$), Z = 2, triclinic, space group $P^{\overline{1}}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and ϕ scans, 36369 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.60 Å⁻¹, 9284 independent ($R_{int} = 0.066$) and 6932 observed reflections [$l > 2\sigma(l)$], 718 refined parameters, R = 0.054, $wR^2 = 0.154$, max. (min.) residual electron density 0.28 (-0.20) e.Å⁻³, hydrogen atoms calculated and refined as riding atoms.

Preparation of compound 2c

A solution of dimesitylvinylphosphane (118 mg, 0.4 mmol, 1 eq) in CH_2CI_2 (2 mL) was added to bis(pentafluorophenyl)borane (138 mg, 0.4 mmol, 1 eq). After 30 min the yellow solution was added to bis(pentynyl)mesitylphosphane (**1c**) (114 mg, 0.4 mmol, 1 eq) and stirred for 1 day. Subsequently, all volatiles were removed *in vacuo* and the residue was dissolved in *n*-pentane (5 mL). The solvent was removed *in vacuo* to give compound **2c** as an orange solid (290 mg, 0.3 mmol, 78%).

Elemental analysis: cal. for C₅₁H₅₁BF₁₀P₂: C: 66.10, H: 5.55, found: C: 66.24, H: 5.55.

IR (KBr): \tilde{V} [cm⁻¹] = 2958 (m), 2926 (m), 2870 (m), 2733 (w), 2385 (w), 2196 (w), 1734 (w), 1699 (w), 1644 (s), 1604 (s), 1558 (m), 1516 (s), 1457 (s), 1378 (s), 1310 (m), 1271 (m), 1180 (w), 1138 (m), 1083 (s), 1029 (m), 973 (s), 850 (m), 776 (w), 741 (w), 684 (w), 616 (w), 554 (w). **Melting point:** 73 °C.

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ^{1} H = 6.86 (dm, ⁴J_{PH} = 2.9 Hz, 2H, *m*-mes¹), 6.75 (dm, ⁴J_{PH} = 3.2 Hz, 4H, *m*-mes), 2.75 (m, 2H, PCH₂), 2.39 (m, 2H, CH₂), 2.26 (s, 3H, *p*-CH₃^{mes,1}), 2.22 (s, 6H, *p*-CH₃^{mes}), 2.15 (br, 6H, *o*-CH₃^{mes,1}), 2.16 (m, 2H, 6'-CH₂), 2.12 (m, 2H, 6-CH₂), 2.07 (s, 12H, *o*-CH₃^{mes}), 1.34 (m, 2H, 7'-CH₂), 1.31 (m, 2H, 7-CH₂), 0.81 (t, ³J_{HH} = 7.3 Hz, 3H, 8'-CH₃), 0.60 (t, ³J_{HH} = 7.3 Hz, 3H, 8-CH₃).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ^{13} C = 165.5 (br, C2), 146.7 (d, ²*J*_{PC} = 14.9 Hz, *o*-Mes¹), 146.1 (br, C3), 145.3 (dd, *J*_{PC} = 21.6 Hz, *J*_{PC} = 11.8 Hz, C4), 142.3 (d, ²*J*_{PC} = 11.1 Hz, *o*-mes), 141.0 (d, ⁴*J*_{PC} = 1.8 Hz, *p*-mes¹), 140.7 (d, ¹*J*_{PC} = 6.2 Hz, C5), 138.9 (*p*-mes), 132.5 (*i*-mes), 130.4 (d, ³*J*_{PC} = 4.8 Hz, *m*-mes), 129.4 (d, ³*J*_{PC} = 5.3 Hz, *m*-mes¹), 125.4 (d, ¹*J*_{PC} = 9.7 Hz, *i*-mes¹), 33.8 (d, ²*J*_{PC} = 15.6 Hz, 6-CH₂), 30.3 (d, ²*J*_{PC} = 16.8 Hz, 6'-CH₂), 29.1 (d, ¹*J*_{PC} = 5.1 Hz, PCH₂), 28.7 (d, ³*J*_{PC} = 11.6 Hz, 7-CH₂), 26.0 (dd, ²*J*_{PC} = 14.2 Hz, ³*J*_{PC} = 3.0 Hz, CH₂), 25.7 (d, ³*J*_{PC} = 6.1 Hz, 7'-CH₂), 23.4 (d, ³*J*_{PC} = 10.2 Hz, *o*-CH₃^{mes}), 21.6 (br d, ³*J*_{PC} = 14.7 Hz, *o*-CH₃^{mes,1}), 21.2 (*p*-CH₃^{mes,1}), 20.8 (*p*-CH₃^{mes}), 14.4 (d, *J* = 1.0 Hz, 8-CH₃), 14.3 (d, *J* = 1.1 Hz, 8'-CH₃), [C₆F₅ not listed].

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): $\delta^{11}B = 35.0 (v_{1/2} \approx 2500 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, CD₂Cl₂): δ^{19} F = -126.8 (br, 2F, *o*-C₆F₅), -152.4 (br, 1F, *p*-C₆F₅), -162.9 (br, 2F, *m*-C₆F₅), [$\Delta\delta^{19}$ F_{p,m} = 10.5].

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta^{31}P = 10.4 (v_{1/2} \sim 15 \text{ Hz}, 1P, P-1), -12.9 (v_{1/2} \sim 100 \text{ Hz}, 1P, Pmes_2).$

166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 ¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂) spectrum of compound **2c**.

Selected NMR data at low temperature:

¹¹B{¹H} NMR (160 MHz, 213 K, CD₂Cl₂): δ¹¹B = -7.2 (ν_{1/2} ≈ 2200 Hz).

¹⁹**F NMR** (470 MHz, 213 K, CD_2Cl_2): $\delta^{19}F = -114.1$ (br m, 1F, *o*), -129.4 (br m, 1F, *o'*), -157.3 (br m, 1F, *p*), -163.0 (br m, 1F, *m'*), -165.5 (br m, 1F, *m*)(C_6F_5)[$\Delta\delta^{19}F_{p,m} = 5.7, 8.2$]; -125.1 (br m, 1F, *o*), -126.1 (br m, 1F, *o'*), -159.9 (br m, 1F, *p*), -164.5 (br m, 1F, *m'*), -165.4 (br m, 1F, *m*)(C_6F_5) [$\Delta\delta^{19}F_{p,m} = 4.6, 5.5$].

	P-1		Pmes ₂		
_	δ^{31} P	ν _{1/2} (Hz)	$\delta^{\tt 31} P$	ν _{1/2} (Hz)	
299K	10.4	15	-12.9	100	
273K	7.6	20	-4.4	270	
263K	6.7	20	-1.7	320	
243K	5.5	20	1.4	200	
233K	5.1	15	2.0	130	
223K	4.8	15	2.1	70	
213K	4.6	15	2.1	50	

³¹P{¹H} NMR (202 MHz, CD₂Cl₂)

-4

 19 F NMR (470 MHz, VT, CD₂Cl₂) spectra of compound **2c**.

 $\Delta G^{\neq} = RT_c(22.96 + ln(T_c/\Delta v) [J mol^{-1}]; R = 8.314 J (mol K)^{-1}; 1 cal = 4.187 J.$

¹⁹**F NMR** (470 MHz, CD₂Cl₂): δ¹⁹F(*p*-C₆F₅, 299K): -152.4 (br, 2F); δ¹⁹F(*p*-C₆F₅, 213K): -157.3, -159.9 (each br m, each 1F).

 ΔG^{2} (para, T_c = 258 K; Δv (213K) = 1221 Hz) = 11.0 kcal/mol

Preparation of compound 2d

A solution of dimesitylvinylphosphane (89 mg, 0.3 mmol, 1 eq) in dichloromethane (2 mL) was added to bis(pentafluorophenyl)borane (104 mg, 0.3 mmol, 1 eq). Then the solution was stirred for 30 min. After addition of bis(pentynyl)(2,4,6-triisopropylphenyl)phosphane (**1d**) (110 mg, 0.3 mmol, 1 eq) the reaction mixture was stirred at room temperature for 5 days, before all volatiles were removed *in vacuo* and the residue was dissolved in *n*-pentane (5 mL). Removal of the solvent *in vacuo* gave compound **2d** as an orange solid (260 mg, 0.26 mmol, 86%).

Elemental analysis: Calc. for C₅₇H₆₃BF₁₀P₂: C: 67.73, H: 6.28; found: C: 68.50, H: 6.81.

IR (KBr): \tilde{V} [cm⁻¹] = 3747 (w), 2960 (m), 2928 (m), 2869 (m), 2731 (w), 1647 (m), 1603 (m), 1515 (s), 1459 (s), 1381 (m), 1313 (m), 1273 (m), 1243 (m), 1087 (s), 1030 (m), 972 (s), 851 (m), 742 (m), 642 (m), 554 (w).

Melting point: 53 °C.

¹**H NMR** (500 MHz, 299 K, C₆D₆): δ^{1} H = 7.14 (d, ⁴*J*_{PH} = 2.9 Hz, 2H, *m*-tipp), 6.59 (d, ⁴*J*_{PH} = 2.9 Hz, 4H, *m*-mes), 3.44 (br, 2H, *o*-CH^{IPr}), 2.81 (m, 2H, PCH₂), 2.69 (sept, ³*J*_{HH} = 7.0 Hz, 1H, *p*-CH^{IPr}), 2.47 (m, 2H, CH₂), 2.29 (m, 2H, 6-CH₂), 2.24 (s, 12 H, *o*-CH₃^{mes}), 2.21 (m, 2H, 6'-CH₂), 2.03 (s, 6H, *p*-CH₃^{mes}), 1.53 (m, 2H, 7-CH₂), 1.48 (m, 2H, 7'-CH₂), 1.32 (d, ³*J*_{HH} = 7.0 Hz, 6H, *o*-CH₃^{IPr}), 1.25 (d, ³*J*_{HH} = 6.7 Hz, 6H, *o*-CH₃^{IPr}), 1.12 (d, ³*J*_{HH} = 7.0 Hz, 6 H, *p*-CH₃^{IPr}), 0.78 (t, ³*J*_{HH} = 7.3 Hz, 3H, 8'-CH₃), 0.64 (t, ³*J*_{HH} = 7.3 Hz, 3H, 8-CH₃). ¹³C{¹H} **NMR** (126 MHz, 299 K, C₆D₆): δ^{13} C = 169.3 (br, C2), 157.6 (d, ²*J*_{PC} = 13.7 Hz, *o*-tipp), 152.8 (d, ⁴*J*_{PC} = 1.7 Hz, *p*-tipp), 147.1 (br, C3), 145.0 (dd, *J*_{PC} = 24.1 Hz, *J*_{PC} = 15.0 Hz, C4), 143.2 (d, ¹*J*_{PC} = 7.7 Hz, C5), 142.0 (d, ²*J*_{PC} = 15.9 Hz, *i*-tipp), 122.7 (d, ³*J*_{PC} = 5.3 Hz, *m*-tipp), 34.7 (*p*-CH^{IPr}), 33.4 (d, ²*J*_{PC} = 15.8 Hz, 6-CH₂), 29.7 (dd, *J*_{PC} = 15.3 Hz, *o*-CH^{IPr}), 24.8 (*o*-CH₃^{IPr}), 23.8 (*p*-CH₃^{IPr}), 23.3 (d, ³*J*_{PC} = 12.1 Hz, *o*-CH₃^{IPr}), 24.8 (*o*-CH₃^{IPr}), 23.8 (*p*-CH₃^{IPr}), 23.3 (d, ³*J*_{PC} = 12.1 Hz, *o*-CH₃^{IPr}), 20.7 (*p*-CH₃^{IPr}), 24.8 (*o*-CH₃^{IPr}), 23.8 (*p*-CH₃^{IPr}), 23.3 (d, ³*J*_{PC} = 12.1 Hz, *o*-CH₃^{IPr}), 20.7 (*p*-CH₃^{IPr}), 14.1 (d, *J* = 1.2 Hz, 8-CH₃), 13.9 (8'-CH₃), [C₆F₅ not listed] ¹¹B{¹H} NMR (160 MHz, 299 K, C₆D₆): δ^{11} B = 50.2 (V_{1/2} ≈ 3200 Hz). ¹⁹**F NMR** (470 MHz, 299 K, C_6D_6): $\delta^{19}F = -127.6$ (br, 2F, $o-C_6F_5$), -148.4 (br, 1F, $p-C_6F_5$), -161.4 (br m, 2F, $m-C_6F_5$), $[\Delta\delta^{19}F_{p,m}=13.0]$.

 ${}^{31}\text{P}\{{}^{1}\text{H}\}\text{ NMR (202 MHz, 299 K, C_6D_6): } \\ \delta^{31}\text{P} = 4.2 \text{ (}\nu_{1/2} \simeq 10 \text{ Hz, 1P, P-1), } -17.8 \text{ (}\nu_{1/2} \simeq 60 \text{ Hz, 1P, Pmes}_2\text{).}$

selected NMR data at low temperature:

¹¹B{¹H} NMR (160 MHz, 203 K, CD₂Cl₂): $δ^{11}B = -8.2$ (v_{1/2} ≈ 600 Hz).

¹⁹**F NMR** (470 MHz, 203 K, CD_2Cl_2): $\delta^{19}F = -113.5$, -125.4, -126.3, -129.9 (each: br, each 1F, o-C₆F₅), -157.2, -159.2 (each br m, each 1F, p-C₆F₅), -162.9, -163.1, -164.2, -165.4 (each br m, each 1F, m-C₆F₅).

	ſ	P-1	Pn	nes ₂
	δ^{31} P	ν _{1/2} (Hz)	δ^{31} P	ν _{1/2} (Hz)
299K	4.5	10	-19.5	40
273K	2.7	20	-15.2	410
263K	1.9	30	-12.6	900
253K	0.9	40	-6.6	3500
243K	0.1	60	-	-
233K	-0.7	60	2.3	550
223K	-1.3	60	2.6	140
213K	-1.7	30	2.5	60
203K	-2.1	20	2.4	50

Preparation of compound 9a

A solution of dimesitylvinylphosphane (74 mg, 0.25 mmol, 1 eq) in toluene (3 mL) was added to bis(pentafluorophenyl)borane (87 mg, 0.25 mmol, 1 eq). Then the solution was stirred for 10 min at room temperature. Subsequently, bis(phenylethynyl)mesitylphosphane (1a) (88 mg, 0.25 mmol, 1 eq) was added and the green solution was stirred at 70 °C for 2 h. After removal of the solvent *in vacuo*, the residue was dissolved in *n*-pentane (5 mL). The supernatant was separated, 4-*tert*-butylphenylacetylene (45 μ L, 0.25 mmol, 1 eq) was added and the reaction mixture was stirred for 4 d. The formed precipitate was collected, dissolved in toluene (4 mL) and covered with *n*-pentane (12 mL). After one day at -32 °C a colorless precipitate was formed and washed with *n*-pentane (2 mL). Drying *in vacuo* gave compound **9a** as a colorless solid (60 mg, 20%). Crystals suitable for the X-ray crystal structure analysis were obtained by covering a solution of compound **9a** in dichloromethane (1 mL) with *n*-pentane (8 mL) at -34 °C.

Exact Mass: Calc. for C₆₉H₆₁BF₁₀P₂⁺: 1152.4176; found: 1152.4187.

IR (KBr): \tilde{V} (cm⁻¹) = 3747 (w), 2957 (m), 2464 (w), 2359 (w), 2153 (w), 1699 (m), 1651 (m), 1604 (m), 1509 (s), 1457 (s), 1396 (w), 1240 (s), 1153 (m), 1085 (s), 975 (s), 912 (m), 848 (m), 748 (s), 700 (s), 642 (m), 564 (w), 521 (w).

Melting point: 134 °C.

¹**H NMR** (500 MHz, 299 K, CD₂Cl₂): δ^{1} H = 7.33 (m, 2H, *o*-Ph⁵), 7.22 (m, 2H, *m*-Ph⁵), 7.14 (m, 1H, *p*-Ph⁵), 7.14 (dm, ¹J_{PH} = 480.2 Hz, 1H, PH), 7.08 (m, 2H, 9-CH), 7.02, 6.85 (each br, each 2H, *o*,*m*-Ph²), 6.94 (m, 2H, *m*-mes^b), 6.86 (m, 2H, 10-CH), 6.80 (m, 2H, *m*-mes^a), 6.76 (m, 1H, *p*-Ph²), 6.69 (br m, 1H, *m*-mes¹), 6.52 (br, 1H, *m*'-mes¹), 3.52, 2.82 (each: m, 1H, CH₂), 3.21, 2.87 (each: m, 1H, PCH₂), 2.78 (s, 3H, *o*-CH₃^{mes,1}), 2.35 (br, 3H, *p*-CH₃^{mes,b}), 2.24 (s, 3H, *p*-CH₃^{mes,a}), 2.06 (s, 6H, *p*-CH₃^{mes,1}), 1.87 (s, 12H, *o*-CH₃^{mes,a}), 1.86 (s, 12H, *o*-CH₃^{mes,b}), 1.82 (s, 3H, *o*'-CH₃^{mes,1}), 1.07 (s, 9H, *t*Bu).

¹³C{¹H} NMR (126 MHz, 299 K, CD₂Cl₂): δ^{13} C = 155.8 (br, C3), 151.8 (C2), 149.9 (C11), 148.5 (dd, J_{PC} = 26.1 Hz, J_{PC} = 18.1 Hz, C4), 146.9 (d, $^{2}J_{PC}$ = 35.1 Hz, *o*-mes¹), 146.6 (br d, $^{2}J_{PC}$ = 5.2 Hz, *o*'-mes¹), 146.4 (*p*-mes^b), 145.9 (*p*-mes^a), 143.7 (d, $^{1}J_{PC}$ = 10.1 Hz, C5), 143.6 (br d, $^{2}J_{PC}$ = 9.8 Hz, *o*-mes^a), 142.9 (br d, $^{2}J_{PC}$ = 9.7 Hz, *o*-mes^b), 141.0 (d, $^{2}J_{PC}$ = 19.9 Hz, *i*-Ph²)140.4 (*p*-mes¹), 139.8 (d, $^{2}J_{PC}$ = 16.7 Hz, *i*-Ph⁵), 132.3 (d, $^{3}J_{PC}$ = 11.8 Hz, *m*-mes^a), 131.8 (d, $^{3}J_{PC}$ = 10.2 Hz, *m*-mes^b), 130.4 (9-CH), 129.1 (*m*-Ph⁵), 128.9 (br, *m*'-mes¹), 128.7 (br d, $^{3}J_{PC}$ = 8.8 Hz, *m*-mes¹), 128.3 (br), 126.8 (*o*,*m*-Ph²), 128.2 (*o*-Ph⁵), 126.1 (*p*-Ph⁵), 125.6 (10-CH), 125.1 (d, $^{1}J_{PC}$ = 12.4 Hz, *i*-mes¹), 124.7 (*p*-Ph²), 124.1 (C8), 113.1 (br, C6), 111.6 (d,

39

 ${}^{1}J_{PC} = 62.3 \text{ Hz}, i\text{-mes}^{b}$), 111.1 (d, ${}^{1}J_{PC} = 57.3 \text{ Hz}, i\text{-mes}^{a}$), 92.0 (br, C7), 34.6 (*t*Bu), 31.1 (*t*Bu), 25.8 (CH₂), 24.7 (d, ${}^{3}J_{PC} = 29.6 \text{ Hz}, o\text{-CH}_{3}^{\text{mes},1}$), 23.0 (dd, ${}^{1}J_{PC} = 37.6 \text{ Hz}, J = 3.9 \text{ Hz}, PCH_{2}$), 22.4 (br d, ${}^{3}J_{PC} = 5.4 \text{ Hz}, o\text{-CH}_{3}^{\text{mes},a}$), 21.5 (*p*-CH₃^{mes,b}), 21.2 (*p*-CH₃^{mes,a}), 21.14 (br d, ${}^{3}J_{PC} = 7.4 \text{ Hz}, o\text{-CH}_{3}^{\text{mes},b}$), 21.06 (d, ${}^{5}J_{PC} = 7.6 \text{ Hz}, p\text{-CH}_{3}^{\text{mes},1}$), 18.9 (br, o'-CH₃^{mes,1}). [C₆F₅ not listed, ^t tentative assignement]

¹¹B{¹H} NMR (160 MHz, 299 K, CD₂Cl₂): $δ^{11}B = -19.3$ (v_{1/2} ≈ 50 Hz).

¹⁹**F NMR** (470 MHz, 299 K, C_6D_6): $\delta^{19}F = -130.6$ (br, 2F, *o*), -163.5 (t, ${}^{3}J_{FF} = 19.9$ Hz, 1F, *p*), -167.0 (br m, 2F, m)(C_6F_5)[$\Delta\delta^{19}F_{p,m} = 3.5$], -130.6 (br, 2F, *o*), -164.8 (t, ${}^{3}J_{FF} = 20.3$ Hz, 1F, *p*), -167.9 (mbr , 2F, *m*)(C_6F_5)[$\Delta\delta^{19}F_{p,m} = 3.1$].

³¹P{¹H} NMR (202 MHz, 299 K, CD₂Cl₂): $\delta^{31}P = 10.2$ (t, J = 5.6 Hz, 1P, P-1), -13.3 ($v_{1/2} \sim 2$ Hz, 1P, Pmes₂).

³¹**P** NMR (202 MHz, 299 K, CD₂Cl₂): δ^{31} P = 10.2 ($v_{1/2} \sim 20$ Hz, 1P, P-1), -13.3 (d, ¹J_{PH} ≈ 480 Hz, 1P, Pmes₂).

30 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -4 ${}^{11}B{}^{1}H$ NMR (160 MHz, 299 K, CD₂Cl₂) spectrum of compound **9a**.

X-ray crystal structure analysis of compound 9a: formula $C_{69}H_{61}BF_{10}P_2 \cdot 2 \times CH_2Cl_2$, M = 1322.78, yellow crystal, 0.10 × 0.07 × 0.03 mm, a = 11.1621(3), b = 15.9872(4), c = 19.7607(6) Å, $\alpha = 93.009(2)$, $\beta = 96.384(2)$, $\gamma = 109.293(2)^\circ$, V = 3292.6(2) Å³, $\rho_{calc} = 1.334$ gcm⁻³, $\mu = 2.683$ mm⁻¹, empirical absorption correction (0.775 $\leq T \leq 0.923$), Z = 2, triclinic, space group $P^{\overline{1}}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and ϕ scans, 49077 reflections collected (±h, ±k, ±l), [(sin θ)/ λ] = 0.60 Å⁻¹, 11528 independent ($R_{int} = 0.062$) and 8811 observed reflections [$l > 2\sigma(l)$], 862 refined parameters, R = 0.052,

 $wR^2 = 0.144$, max. (min.) residual electron density 0.82 (-0.47) e.Å⁻³, the hydrogen atom at P2 was refined freely; others were calculated and refined as riding atoms.

Preparation of compound 10c

A solution of dimesitylvinylphosphane (30 mg, 0.1 mmol, 1 eq) in CD_2Cl_2 (1 mL) was added to bis(pentafluorophenyl)borane (35 mg, 0.1 mmol, 1 eq). Then the solution was stirred for 5 h and bis(pentynyl)mesitylphosphane (1c) (25 mg, 0.1 mmol, 1 eq) was added. The reaction mixture was stirred overnight, before *n*-butylisocyanide (10 µL, 0.1 mmol, 1 eq) was added (*CAUTION: Many isocyanides are toxic compounds that need to be handled with due care.*). The yellow solution was stirred overnight and all volatiles were removed *in vacuo*. The residue was dissolved in *n*-pentane (3 mL) before the solvent was removed *in vacuo* to give compound 10c as a yellow solid (70.0 mg, 0.07 mmol, 70%).

Elemental Analysis: Calc. for C₅₆H₆₀BF₁₀NP₂: C: 66.41, H: 5.99, N: 1.39; found: C: 66.43, H: 5.97, N: 1.92.

IR (KBr): \tilde{V} [cm⁻¹] = 2961 (m), 2928 (m), 2872 (m), 2732 (w), 2298 (m), 1644 (m), 1603 (m), 1516 (s), 1464 (s), 1379 (m), 1283 (m), 1092 (s), 1027 (m), 977 (s), 850 (m), 775 (w), 712 (w), 616 (w), 553 (w). **Decomposition point:** 80 °C.

¹**H NMR** (600 MHz, 299 K, CD₂Cl₂): δ^{1} H = 6.90 (d, ⁴J_{PH} = 2.7 Hz, 2H, *m*-mes¹), 6.76 (d, ⁴J_{PH} = 2.3 Hz, 4H, *m*-mes), 3.92 (m, 2H, 9-CH₂), 2.31 (m, 2H, 6-CH₂), 2.28 (s, 3H, *p*-CH₃^{mes,1}), 2.24 (br, 4H, *o*-CH₃^{mes,1}), 2.22 (m, 2H, CH₂, PCH₂)^t, 2.18 (m, 2H, CH₂, CH₂)^t, 2.21 (s, 6H, *p*-CH₃^{mes}), 2.16 (s, 12H, *o*-CH₃^{mes}), 1.87 (m, 2H, 6'-CH₂), 1.80 (m, 2H, 10-CH₂), 1.38 (m, 2H, 11-CH₂), 1.34 (m, 2H, 7-CH₂), 1.16 (m, 2H, 7'-CH₂), 0.94 (t, ³J_{HH} = 7.6 Hz, 3H, 12-CH₃), 0.72 (t, ³J_{HH} = 7.5 Hz, 3H, 8-CH₃), 0.64 (t, ³J_{HH} = 7.4 Hz, 3H, 8'-CH₃). [^t: tentative assignement]

¹³C{¹H} NMR (151 MHz, 299 K, CD₂Cl₂): δ^{13} C = 195.8 (br, C=N), 156.3 (C2), n.o. (C3), 143.5 (d, ¹*J*_{PC} = 2.8 Hz, C5), 142.5 (dd, *J*_{PC} = 17.5 Hz, *J*_{PC} = 14.7 Hz, C4), 142.2 (d, ²*J*_{PC} = 13.7 Hz, *o*-mes), 141.7 (d, ⁴*J*_{PC} = 1.8 Hz, *p*-mes¹), 138.0 (*p*-mes), 132.9 (d, ¹*J*_{PC} = 24.0 Hz, *i*-mes), 130.3 (d, ³*J*_{PC} = 3.3 Hz, *m*-mes), 129.7 (d, ³*J*_{PC} = 6.2 Hz, *m*-mes¹), 123.7 (d, ¹*J*_{PC} = 6.0 Hz, *i*-mes¹), 52.8 (9-CH₂), 32.9 (d, ²*J*_{PC} = 14.1 Hz, 6-CH₂), 30.1 (d, ²*J*_{PC} = 16.1 Hz, 6'-CH₂), 29.7 (10-CH₂), 29.5 (dd, *J*_{PC} = 18.8 Hz, *J*_{PC} = 4.7 Hz, PCH₂)^t, 26.0 (dd, *J*_{PC} = 23.9 Hz, *J*_{PC} = 3.4 Hz, CH₂)^t, 25.9 (d, ³*J*_{PC} = 9.9 Hz, 7-CH₂), 25.6 (d, ³*J*_{PC} = 6.8 Hz, 7'-CH₂), 22.8 (d, ³*J*_{PC} = 2.8 Hz, 7'-CH₂)

14.2 Hz, *o*-CH₃^{mes}), 21.7 (br, *o*-CH₃^{mes,1}), 21.3 (d, J = 0.7 Hz, *p*-CH₃^{mes,1}), 21.0 (11-CH₂), 20.9 (*p*-CH₃^{mes}), 14.3 (d, J = 1.3 Hz, 8-CH₃), 14.2 (d, J = 0.7 Hz, 8'-CH₃), 13.8 (12-CH₃), [C₆F₅ not listed] ¹¹B{¹H} NMR (192 MHz, 299 K, CD₂Cl₂): $\delta^{11}B = -17.3$ ($v_{1/2} \approx 300$ Hz).

¹⁹**F NMR** (564 MHz, 299 K, CD₂Cl₂): δ^{19} F = -135.0 (m, 2F, *o*-C₆F₅), -158.2 (t, ³J_{FF} = 20.0 Hz, 1F, *p*-C₆F₅), -164.0 (m, 2F, *m*-C₆F₅), [$\Delta\delta^{19}$ F_{p,m} = 5.8].

³¹P{¹H} NMR (243 MHz, 299 K, CD₂Cl₂): $\delta^{31}P = 9.6$ (d, J = 1.9 Hz, 1P, P-1), -22.7 ($v_{1/2} \sim 15$ Hz, 1P, Pmes₂).

³¹**P** NMR (243 MHz, 299 K, CD₂Cl₂): δ^{31} P = 9.6 (quin, J_{PH} = 12.5 Hz, 1P, P-1), -22.7 ($v_{1/2} \sim 20$ Hz, 1P, Pmes₂).

Catalytic Hydrogenation reactions with compound 2c

General Procedure

The precatalyst **2c** and the substrate were each dissolved in C_6D_6 (1 mL) and the combined solutions were transferred in a special ampoule (10 mL) equipped with a magnetic stirring bar [P. Spies, S. Schwendemann, G. Kehr, R. Fröhlich and G. Erker, *Angew. Chem. Int. Ed.*, 2008, **47**, 7543.]. The ampule was put into an autoclave and purged with H₂ gas. The reaction mixture was stirred (conditions see Table 1) before the pressure was realeased and the conversion rate of the reactions was monitored NMR spectroscopically. After full conversion the products were purified via column chromatography (silica gel), extraction or evaporation (see therefore the corresponding experiments).

x mol% 2c (amount)	Substrate (loading)	Pressure [H ₂] [bar]	Temperature	Reaction time [h]	Conversion (isolated yield)
25 (37.0 mg)	Ph N 32.0 mg (0.12 mmol)	15	r.t.	24	>99% (-)
8 (37.0 mg)	88.2 mg (0.5 mmol)	50	r.t.	38	>99% (22%)
7.5 (18.5 mg)	^{Ph} N 53.0 mg (0.3 mmol)	40	r.t.	41	>99% (37%)
13 (40.0 mg)	40 μL (0.31 mmol)	50	100 °C	48	>99% (75%)

Table 1: Overview of performed hydrogenation reactions and applied conditions with 2c.

7.5 (37.0 mg)	Ph ^{╱N} ≫ ^{Ph} 90.6 mg (0.5 mmol)	50	r.t.	41.5	>99% (66%)
50 (46.3 mg)	21.3 mg (0.1 mmol)	45	r.t.	20	0
25 (40.0 mg)	O Ph Ph 21.8 mg (0.12 mmol)	50	50 °C	45	0

Hydrogenation of N-(1-phenylethen-1-yl)piperidine

This amine was not isolated.

¹**H NMR** (200 MHz, 300 K, C_6D_6): $\delta^1H = 7.28$ (m, 2H, *o*-Ph), 7.18 (m, 2H, *m*-Ph), 7.10 (m, 1H, *p*-Ph), 3.25 (q, ³J_{HH} = 6.7 Hz, 1H, 1-CH), 2.28 (m, 4H, 3-CH₂), 1.45 (m, 6H, 4-CH₂, 5-CH₂), 1.21 (d, ³J_{HH} = 6.7 Hz, 3H, 2-CH₃).

Hydrogenation of N-(cyclohex-1-enyl)piperidine

To purify the product all volatiles were removed from the crude reaction mixture under vacuum using a condensate collector. After slow evaporation of the solvent of the colorless condensate the amine was obtained as colorless liquid (18 mg, 0.11 mmol, 22%).

¹**H NMR** (200 MHz, 300 K, C₆D₆): δ^{1} H = 2.44 (m, 4H, 5-CH₂), 1.97 (m, 1H, 1-CH), 1.74 (m, 4H, 2-CH₂), 1.57 (m, 5H, 3-CH₂, 4-CH₂), 1.39 (m, 4H, 6-CH₂), 1.16 (m, 3H, 4'-CH₂, 7-CH₂).

Hydrogenation of N-(1-phenylethen-1-yl)diethylamine

Ph N

The amine was purified via column chromatography (*n*-pentane:EtOAc 10:1) and was obtained as colorless oil (20 mg, 0.11 mmol, 37%).

 1 H NMR (200 MHz, 300 K, C₆D₆): δ¹H = 7.32 (m, 2H, *o*-Ph), 7.15 (m, 2H, *m*-Ph), 7.04 (m, 1H, *p*-Ph), 3.63 (q, $^{3}J_{HH}$ = 6.8 Hz, 1H, CH), 2.38 (q, $^{3}J_{HH}$ = 7.0 Hz, 4H, CH₂), 1.15 (d, $^{3}J_{HH}$ = 6.8 Hz, 3H, ^{CH}CH₃), 0.85 (t, $^{3}J_{HH}$ = 7.0 Hz, 6H, ^{CH2}CH₃).

Hydrogenation of N-methylindole

Before the pressure was realesed, the autoclave was cooled down to 0 °C for 3 h, to $3 \xrightarrow{2}_{1}$ N condense all volatiles. After releasing the pressure slowly, 10 mL toluene and 1 M HCl (20 mL) were added to the autoclave and the mixture stirred for 10 min. The organic phase was separated and the aqueous layer was neutralized with 1 M NaOH (21 mL) and extracted with Et₂O (3x20 mL). The organic layer was dried over MgSO₄. After removal of the solvent under reduced pressure *N*-methylindoline was obtained as brown liquid (30 mg, 0.23 mmol, 75%).

¹**H NMR** (200 MHz, 300 K, C₆D₆): δ^{1} H = 7.06 (m, 2H, 2-CH, 4-CH), 6.65 (dt, ${}^{3}J_{HH}$ = 7.4 Hz, ${}^{3}J_{HH}$ = 1.0 Hz, 1H, 3-CH), 6.48 (m, 1H, 1-CH), 3.29 (dt, ${}^{3}J_{HHtrans}$ = 7.4 Hz, ${}^{3}J_{HHcis}$ = 1.0 Hz, 2H, N CH₂), 2.93 (tm, ${}^{3}J_{HH}$ = 8.1 Hz, 2H, CH₂), 2.73 (s, 3H, CH₃).

Hydrogenation of N-benzylideneaniline

¹**H NMR** (200 MHz, 300 K, C₆D₆): δ¹H = 7.16 (m, 5H, *o*-, *m*-, *p*-Ph), 6.77 (m, 2H, *o*-Ph), 6.45 (m, 3H, *m*-, *p*-Ph), 3.94 (m, 2H, CH₂), 3.39 (br, 1H, N-H).