Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supplementary data

Straightforward synthesis of iron cyclopentadienone N-heterocyclic carbene complexes

Andrea Cingolani, Cristiana Cesari, Stefano Zacchini, Valerio Zanotti, Maria Cristina Cassani and

Rita Mazzoni*

Dipartimento di Chimica Industriale "Toso Montanari", viale Risorgimento 4, 40136 Bologna, Italy.

SUMMARY

Imidazolium salts employed in this work	2
Crystal structure of 5	2
Crystal structures of 7b and 7c	3
General: materials and procedures	4
Synthesis and characterization of iron complexes	5
Synthesis and characterization of 5 and 6	5
Synthesis and characterization of 7a-f	6
Synthesis and characterization of 8	10
Synthesis and characterization of 9	11
Synthesis and characterization of 10a,b,d,e	12
Crystal data and experimental details for $5\cdot 0.5C_6H_{14}$, $7a\cdot thf\cdot C_6H_{14}$, 7b, 7c and 10a	15
¹ H-NMR and ¹³ C-NMR spectra of iron complexes	18
ESI-MS spectra of iron complexes	35
References	40

Imidazolium salts employed in this work

Chart S1. Imidazolium salts precursors of NHC ligands.

Crystal Structure of 5

The crystal structure of **5** closely resembles those previously reported for other $Fe(CO)_3$ cyclopentadienone complexes.¹ The X-ray crystal structure clearly illustrates the η^4 character of the bonding of the cyclopentadienone ligand. The average bonding distance from the iron to the tetracyclone ring carbons C(4)-C(7) is 2.11 Å and is markedly shorter than the distance to the ketonic carbon Fe(1)-C(3) [2.4074(19) Å].

Figure S1. ORTEP drawing of **5**. Displacement ellipsoids are at the 30% probability level. H-atoms have been omitted for clarity. Selected bond lengths (Å): Fe(1)-C(1) 1.807(2), Fe(1)-C(2) 1.800(2), Fe(1)-C(34) 1.809(2), Fe(1)-C(3) 2.4074(19), Fe(1)-C(4) 2.1257(19), Fe(1)-C(5) 2.1065(19), Fe(1)-C(6) 2.1016(19), Fe(1)-C(7) 2.1027(19), C(3)-O(3) 1.230(2).

Crystal Structure of 7b and 7c

Figure S2. ORTEP drawing of **7b**. Displacement ellipsoids are at the 30% probability level. Hatoms have been omitted for clarity. Selected bond lengths (Å): Fe(1)-C(1) 1.7678(18), Fe(1)-C(2) 1.7671(17), Fe(1)-C(3) 2.3784(16), Fe(1)-C(4) 2.1442(15), Fe(1)-C(5) 2.0912(15), Fe(1)-C(6) 2.0766(15), Fe(1)-C(7) 2.1758(16), Fe(1)-C(34) 2.0138(17), C(3)-O(3) 1.2444(19).

Figure S3. ORTEP drawing of **7c**. Displacement ellipsoids are at the 30% probability level. Hatoms have been omitted for clarity. Selected bond lengths (Å): Fe(1)-C(1) 1.764(3), Fe(1)-C(2) 1.766(4), Fe(1)-C(3) 2.392(3), Fe(1)-C(4) 2.161(3), Fe(1)-C(5) 2.079(3), Fe(1)-C(6) 2.082(3), Fe(1)-C(7) 2.168(3), Fe(1)-C(34) 2.000(3), C(3)-O(3) 1.240(4).

General: materials and procedures

Solvents: dichloromethane (CH₂Cl₂), tetrahydrofuran (THF), diethyl ether (Et₂O), petroleum ether referring to a fraction of bp 60-80 °C, acetonitrile (CH₃CN) were dried and distilled prior to use. Acetone has been degassed and stored under inert atmosphere on molecular sieves. Other solvents such as ethylacetate (EtOAc), chloroform, ethanol (EtOH), methanol (MeOH), heptane, toluene, CDCl₃, D₂O, CD₃CN (Sigma Aldrich) have been employed without further purification. Reagents: Fe₂(CO)₉ (Strem), methyl iodide, chloridric acid, silver oxide, 1-methylimidazole, 1,3 diphenylacetone, benzyl bromide, 4,4'dimethoxybenzil (Alfa Aesar) have been employed as purchased.

1,3-dimethylimidazolium iodide (**1a**),² 1,3-dibenzylimidazolium bromide (**1b**),³ 1-methyl-3-butylimidazolium chloride, 1-methyl-3-(2-hydroxyethyl)imidazolium chloride (**1d**),⁴ 1-(2-BocNH-ethyl)-3-methylimidazolium iodide (**1e**)⁵ 1-methyl-3-(2-methoxyethyl)imidazolium chloride (**1f**), 1,3bis(2,6-diisopropylphenyl)imidazolium bromide,⁶ 1,3-dimethylimidazol-2-ylidene silver iodide (**2a**),⁷ 1,3-dibenzylimidazol-2-ylidene silver bromide (**2b**),⁸ 1-methyl-3-(2-hydroxyethyl)imidazol-2-ylidene silver chloride (**2d**),⁹ 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene silver bromide,¹⁰ 3,4-Bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone,¹¹ have been prepared following procedures reported in the literature.

The prepared derivatives were characterized by spectroscopic methods. The NMR spectra were recorded using Varian Inova 300 (¹H, 300.1; ¹³C, 75.5 MHz), Varian Mercury Plus VX 400 (¹H, 399.9; ¹³C, 100.6 MHz), Varian Inova 600 (¹H, 599.7; ¹³C, 150.8 MHz) spectrometers at 298 K; chemical shifts were referenced internally to residual solvent peaks. Full ¹H- and ¹³C-NMR assignments were done, when necessary, by gHSQC and gHMBC NMR experiments using standard Varian pulse sequences. Infrared spectra were recorded at 298 K on a Perkin-Elmer Spectrum 2000 FT-IR spectrophotometer. ESI-MS spectra were recorded on Waters Micromass ZQ 4000 with samples dissolved in MeOH or CH₃CN. Elemental analyses were performed on a Thermo-Quest Flash 1112 Series EA instrument.

Synthesis and characterization of iron complexes

Triscarbonyl-(n⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylciclopenta-2,4-dienone)iron (5)

In a 75 mL Teflon tube equipped with magnetic stirrer, 3,4-Bis(4-methoxyphenyl)-2,5diphenylcyclopenta-2,4-dienone 0.53 g (1.2 mmol) and Fe₂(CO)₉ 0.728 g (2 mmol) were dissolved in 40 mL of toluene. The container is closed with a cap, equipped with a temperature sensor, and placed into microwave. The reaction is heated to 140 °C for 70 min. Upon removal of the solvent, the crude was purified to afford the yellow triscarbonyl- η^4 -3,4-bis(4-methoxyphenyl)-2,5diphenylcyclopenta-2,4-dienone)iron complex (5) by neutral alumina column chromatography using dichloromethane/ethyl acetate (100/0 to 0/100). Yield = 50%

Suitable crystals of **5** for X-Ray diffraction were obtained by slow diffusion (CH₂Cl₂/Hexane). **5** has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray diffraction. ¹H-NMR (399.9 MHz, CDCl₃): δ (ppm) 7.55-6.69 (m, 18H, C_{aryl}), 3.76 (s, 6H, -OCH₃). ¹³C-NMR (150.8 MHz, CDCl₃, g-HSQC, g-HMBC): δ (ppm) 208.58 (CO), 169.75 (C=O, Cp), 159.58 (-COCH₃), 133.05-121.56 (C_{aryl}), 113.40 (CH_{aryl}), 103.44 (C_{2,5}, Cp), 82.75 (C_{3,4}, Cp), 55.12 (-OCH₃). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 2067, 2013, 1997; (v_{C=O}) 1636; (v_{C=C}) 1609, 1518. ESI-MS (m/z) (+): 585 [M+H]⁺; 607 [M + Na]⁺; 623 [M+K]⁺. Anal. Calcd (%) for C₃₄H₂₄O₆Fe: C, 69.88; H, 4.14. Found: C, 68.97; H, 3.93.

Dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4dienone)(acetronitrile)iron (6)

In a dried 15 mL Schlenk flask, triscarbonyl-(η^4 -3,4-bis(4methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (**5**) 0.145 g (0.249 mmol) and trimethylamine-N-oxide 0.028 g (0.374 mmol) were dissolved in 3 mL of anhydrous acetonitrile. Reaction mixture was stirred at room temperature and

protected from light for 3 hours. A yellow precipitate appeared. The solid was filtered and washed with diethyl ether and hexane. Yield : 54%

5 has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 MHz, C_7D_8): δ (ppm) 8.24-6.433 (m, 18H, CH_{aryl}); 3.10 (s, 6H, -OCH₃); 0.72 (s, 3H, -NCCH₃). ¹³C-NMR (150.8 MHz, C_7D_8 , g-HSQC, g-HMBC): δ (ppm) 214.21 (CO), 169.74 (C=O, Cp), 159.56 (-COCH₃), 134.99-124.45 (C_{aryl}), 113.44 (CH_{aryl}), 101.41 (C_{2,5}, Cp), 81.31 (C_{3,4}, Cp), 54.32 (-OCH₃), 2.48 (CH₃, CH₃CN). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 2008, 1954; (v_{C=O}) 1636; (v_{C=C}) 1608, 1515. ESI-MS (m/z) (+): 557 [M-CH₃CN]⁺, 583 [M-CH₃]⁺, 598 [M+H]⁺. Anal. Calcd (%) for C₃₅H₂₇NO₅Fe: C, 70.36; H, 4.56. Found: C, 70.75; H, 4.35.

General procedure for the synthesis of dicarbonyl-η⁴-3,4-bis(4-methoxyphenyl)-2,5diphenylcyclopenta-2,4-dienone)(NHC)iron complexes (7)

Imidazolium salts (1), silver oxide (1.2 eq.), tryscarbonyl- η^4 -3,4-bis(4-methoxyphenyl)-2,5diphenylcyclopenta-2,4-dienone) iron precursor (5) and trimethylammine-N-oxide (1.5 eq.) were reacted in CH₃CN under inert atmosphere and with protection from light. After stirring the reaction for the time and at the temperature required in order to reach complete conversion to silver complexes (2), the solvent was removed under vacuo, then the solid dissolved in toluene. The reaction mixture was stirred for 1 hour at 110 °C. Upon removal of the solvent, the crude was purified to afford the dicarbonyl- η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4dienone)(NHC)iron complexes (7) by neutral alumina column chromatography using dichloromethane/ethyl acetate (100/0 to 0/100). Formation of the iron complexes (7) was verified by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray crystal structure, when suitable crystals were available.

Dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1,3-dimethylilidene)iron (7a)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (5) 0.150 g, (0.256 mmol), trimethylammine-N-oxide 0.029 g (0.384 mmol), 1,3-dimethylimidazolium iodide (1a) 0.057 g (0.256 mmol) and silver oxide 0.071 g (0.307 mmol), room temperature, 3h. Yield: 60%.

Suitable crystals of **7a** for X-Ray diffraction were obtained by slow diffusion (THF/Hexane). **7a** has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray diffraction. ¹H-NMR (399.9 MHz, C_7D_8): δ (ppm) 8.33-6.50 (m, 18H, CH_{aryl}), 5.88 (s, 2H, CH_{NHC}) 3.10 (s, 6H, -OCH₃), 2.93 (s. 6H, -NCH_{3NHC}). ¹³C-NMR (150.8 MHz, C_7D_8 , g-HSQC, g-HMBC): δ (ppm) 218.11 (CO), 182.41 ($C_{carbene}$), 166.57 (C=O, Cp), 159.30 (-COCH₃), 123.96 (CH_{NHC}), 136.44-125.66 (CH_{aryl}), 113.39 (CH_{aryl}), 100.73 (C_{2,5}, Cp), 79.76 (C_{3,4}, Cp), 54.28 (-OCH₃) 38.18 (-NCH₃). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1988, 1930; ($v_{C=O}$) 1585; ($v_{C=C}$) 1603, 1518. ESI-MS (m/z) (+): 653 [M+H]⁺; 675 [M + Na]⁺; 691 [M+K]⁺. Anal. Calcd (%) for C₃₈H₃₂N₂O₅Fe: C, 69.95; H, 4.94. Found: C, 69.33; H, 4.63.

Synthesis of dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4dienone)(1,3-dibenzylimidazole)iron (7b)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (5) 0.030 g (0.005 mmol), trimethylammine-N-oxide 0.006 g (0.080 mmol), 1,3-dibenzylimidazolium bromide (1b) 0.016 g (0.005 mmol), and silver oxide 0.014 g (0.016 mmol), 80 °C, 3h. Yield : 70 %.

Suitable crystals of **7b** for X-Ray diffraction were obtained by slow diffusion (Toluene/Hexane). **7b** has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray diffraction. ¹H-NMR (399.9 MHz, C_7D_8) δ (ppm): 8.43-6.46 (m, 28H, CH_{aryl}), 6.06 (s, 2H, -CH_{NHC}), 5.15 (m, -CH₂), 4.50 (m, -CH₂) 3.06 (s, 6H, -OCH₃). ¹³C-NMR (150.8 MHz, C_7D_8 , g-HSQC, g-HMBC) δ (ppm): 217.43 (CO), 184.99 (C_{carbene}), 167.37 (C=O, Cp), 159.27 (-COCH₃), 137.34-123.15 (C_{aryl}), 127.78 (CH_{NHC}), 113.36 (CH_{aryl}), 101.31 (C_{2,5}, Cp), 80.08 (C_{3,4}, Cp), 54.57 (-CH₂), 54.22 (-OCH₃). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1989, 1933; (v_{C=O}) 1586; (v_{C=C}) 1603, 1518. ESI-MS (m/z) (+): 805 [M+H]⁺; 827 [M + Na]⁺; 843 [M+K]⁺. Anal. Calcd (%) for C₅₀H₄₀N₂O₅Fe: C, 74.63; H, 5.01. Found: C, 74.19; H, 4.65.

Dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)(1-methyl-3butyl-imidazol-ylidene)iron (7c)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (**5**) 0.030 g (0.005 mmol), trimethylammine-N-oxide 0.006 g (0.075 mmol), 1-methyl-3-butyl-imidazolium bromide (**1c**) 0.011 g (0.005mmol) and silver oxide 0.014 g (0.006 mmol), 80 °C, 3 hours. Yield : 50 %.

Suitable crystals of **7c** for X-Ray diffraction were obtained by slow diffusion (Toluene/Hexane). **7c** has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray diffraction. ¹H-NMR (399.9 C_7D_8) δ (ppm): 8.97-7.13 (m, 18H, CH_{aryl}), 6.85 (d, H, -CH_{NHC}), 6.69 (d, H, -CH_{NHC}), 4.19 (m, 2H, CH_{2 NHC}), 3.73 (s, 6H, -OCH₃), 3.60 (s. 6H, -CH_{3 NHC}), 2.73 (m, 2H, CH_{2 NHC}), 1.53 (t, 2H, CH_{2 NHC}), 1.36 (t, 3H, CH_{3 NHC}). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 216.04 (CO), 182.41 (C_{carbene}), 166.83 (C=O, Cp), 159.29 (-COCH₃), 129.18-121.65 (C_{aryl}), 124.54 (CH_{NHC}), 113.40 (CH_{aryl}), 100.87 (C_{2,5}, Cp), 80.26 (C_{3,4}, Cp), 54.27 (-OCH₃), 50.39 (-NCH₂-), 38.22 (-NCH₃), 33.63 (-CH₂-), 25.83 (-CH₂-), 13.99(-CH₃). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1987, 1931; (v_{C=O}) 1587; (v_{C=C}) 1607, 1518. ESI-MS (m/z) (+): 695 [M+H]⁺; 717 [M + Na]⁺; 733 [M+K]⁺. Anal. Calcd (%) for C₄₁H₃₈N₂O₅Fe: C, 70.90; H, 5.51. Found: C, 69.19; H, 5.13.

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron 0.060 g (0.103 mmol), trimethylammine-N-oxide 0.012 g (0.155 mmol), 13-(2-hydroxyethyl)-1-methylimidazole chloride (**1d**) 0.016 g (0.103 mmol) and silver oxide 0.029 g (0.124 mmol), room temperature, 3 h. Chromatography eluent: dichloromethane/ethyl acetate/MeOH (100/0/0 to 0/0/100). Yield : 18 %.

7d has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 MHz, C_7D_8) δ (ppm): 8.10 (m, 18H, CH_{aryl}), 6.63 (s, 1H, CH_{NHC}), 6.07 (s, 1H, CH_{NHC}), (CH₂ not visible), 3.10 (s, 6H, -OCH₃), 2.90 (s, 3H, -NCH₃). ¹³C-NMR (150.8 MHz, C_7D_8 , g-HSQC, g-HMBC) δ (ppm): 218.60 (CO), 181.69 ($C_{carbene}$), 163.0 (C=O, Cp), 159.46 (-COCH₃) 134.80-125.37 (CH_{aryl}), 124.48 (CH_{NHC}), 121.99 (CH_{NHC}), 113.47 (CH_{aryl}), (not visible $C_{3,4}$, Cp), (not visible $C_{2,5}$, Cp), 59.24 (-CH₂), 53.30 (-OCH₃), 52.40 (-CH₂), 37.92 (-NCH₃). IR (CH₂Cl₂, cm⁻¹) (v_{CO}) 1991, 1935; (v_{C=O}) 1576 (broad); (v_{C=C}) 1604, 1517. ESI-MS (m/z) (+): 683 [M+H]⁺, 705 [M+Na]⁺. Anal. Calcd (%) for C₃₉H₃₄N₂O₆Fe: C, 68.63; H, 5.02. Found: C, 68.35; H, 4.69.

Dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)[1-(2-Boc-NHethyl)-3-methylilidene]iron (7e)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (5) 0.150 g (0.257 mmol), trimethylammine-N-oxide 0.029 g (0.386 mmol), 1-(2-BocNH-ethyl-)-3-methylimidazolium iodide (1e) 0.091 g (0.257 mmol) and silver oxide 0.071 g (0.308 mmol), room temperature, 1 h. Yield : 53 %.

7e has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 MHz, C_7D_8) δ (ppm): 8.10-6.48 (m, 18H, CH_{aryl}), 6.68 (s, H, CH_{NHC}), 5.98 (s, H, CH_{NHC}), 3.12 (s, 2H, -CH₂), 3.11 (s, 6H, OCH₃), 2.96 (s, 2H, CH₂), 2.79 (s, 3H, NCH₃), 1.45 (s. 9H, -CH_{3 BOC}). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 217.63 (CO), 182.44 (C_{carbene}), 164.51 (C=O, Cp), 159.43(-COCH₃), 156.86 (C=O, BOC), 137.68-121.84 (C_{aryl}), 125.41 (CH_{NHC}), 121.84 (CH_{NHC}), 113.46 (CH_{Aryl}), 98.92 (C_{2,5}, Cp), 88.59 (C_{3,4}, Cp), 77.94 (C, BOC), 58.32 (CH₂), 54.38 (-OCH₃), 49.33 (NCH₂), 37.82(NCH₃), 28.66 (-CH₃, BOC). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1991, 1935; (v_{C=O}) 1576 (broad); ($v_{C=C}$) 1604, 1517. ESI-MS (m/z) (+) = 782[M+H]⁺, 804 [M+Na]⁺. Anal. Calcd (%) for C₄₄H₄₃N₃O₇Fe: C, 67.61; H, 5.54. Found: C, 66.95; H, 5.06.

Dicarbonyl-(η⁴-3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)[1-(2-methoxyethyl)-3-methylilidene]iron (7f)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron (**5**) 0.060 g (0.100 mmol), trimethylammine-N-oxide 0.012 g (0.150 mmol), 3-(2-methoxyethyl)-1-methylimidazole chloride (**1f**) 0.016 g (0.103 mmol) and silver oxide 0.028 g (0.120 mmol, room temperature,1 h. Yield : 55 %.

7f has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 MHz, C_7D_8) δ (ppm): 8.29-6.49 (m, 18H, CH_{aryl}), 6.95 (s, 1H, CH_{NHC}), 6.00 (s, 1H, CH_{NHC}), 3.86 (br, 2H, CH_2), 3.09 (s, 6H, -OCH₃), 2.92 (s, 3H, -NCH₃) 2.88 (s, 3H, -OCH₃), 2.08 (br, 2H, CH₂). ¹³C-NMR (150.8 MHz, C_7D_8 , g-HSQC, g-HMBC) δ (ppm): 218.05 (CO), 182.42 ($C_{carbene}$), 166.72 (C=O, Cp), 159.34 (-COCH₃), 136.23-125.61 (CH_{aryl}), 124.24 (CH_{NHC}), 123.53 (CH_{NHC}), 113.41 (CH_{aryl}), 100.83 ($C_{3,4}$, Cp), 79.97 ($C_{2,5}$, Cp), 72.72 (-CH₂), 58.17 (-OCH₃), 54.30 (-OCH₃), 50.73 (CH₂), 38.14 (-NCH₃). IR (CH_2Cl_2 , cm⁻¹): (v_{CO}) 1987, 1931; ($v_{C=O}$) 1586 (broad); ($v_{C=C}$) 1518. ESI-MS (m/z) (+) = 697 [M+H]⁺, 719 [M+Na]⁺. Anal. Calcd (%) for $C_{40}H_{36}N_2O_6Fe$: C, 68.97; H, 5.21. Found: C, 68.80; H, 4.99.

bis(trimethylsilil)biciclo[3.3.0]nona 1,4-dien-3-one)4-methoxyphenyl)iron (8).

In a 75 mL Teflon tube equipped with magnetic stirrer, 1,7-octadiyne 0.027 g (0.11 mmol) and $Fe_2(CO)_9 0.039$ g (0.11 mmol) were dissolved in 40 mL of toluene. The container is closed with a cap, equipped with a temperature sensor, and placed into microwave reactor. The reaction is heated to 140 °C for 140 min. Upon removal of the solvent, the crude was purified to afford the yellow triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (8) by neutral alumina column chromatography using dichloromethane/ethyl acetate (100/0 to 0/100). Yield = 83% 8 has been analyzed by IR, ¹H-NMR. ¹H-NMR (399.9 MHz, CDCl₃): δ (ppm) 2.56 (m, 4H, CH₂), 1.82 (m, 4H, CH₂), 0.27 (s, 18H, CH₃, TMS). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 2063, 2004, 1987.

Dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)[acetonitrile]iron (9)

In a dried 15 mL Schlenk flask, triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (8) 0.039 g (0.094 mmol) and trimethylamine-N-oxide 0.011 g (0.14 mmol) were dissolved in 3 mL of anhydrous acetonitrile. Reaction mixture was stirred at room temperature and protected from light for 3 hours. A yellow precipitate appeared. The solid was filtered and washed with diethyl ether and hexane. Yield : 78%.

9 has been analyzed by IR, ¹H-NMR. ¹H-NMR (399.9 MHz, CDCl₃): δ (ppm) 2.28 (m, 4H, CH₂), 2.23 (s, 3H, CH₃), 1.56 (m, 4H, CH₂), 0.24 (s, 18H, CH₃, TMS). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1999, 1938.

General procedure for the synthesis of dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)(NHC)iron complexes (10)

Same general procedure for complex 7. Precursor is triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (8).

Dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)[1,3-dimethyl-ilidene]iron (10a)

Triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (8) 0.035 g (0.084 mmol), trimethylammine-N-oxide 0.009 g (0.12 mmol), 1,3-dimethylimidazolium iodide 0.019 g (0.084 mmol) and silver oxide 0.035 g (0.084 mmol), room temperature, 3 h. Yield : 86 % Suitable crystals of 10a for X-Ray diffraction were obtained by slow diffusion (Toluene/Hexane). 10a has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS and X-Ray diffraction. ¹H-NMR (399.9 CDCl₃) δ (ppm): 6.98 (s, 2H, CH_{NHC}), 3.91 (s, 6H, CH₃), 2.45 (t, 4H, CH₂), 1.85-1.87 (m, 4H, CH₂), 0.174 (s, 18H, CH₃, TMS). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 217.00 (CO), 182.00 (C_{carben}), (C=O, Cp) (not visible), 123.79 (CH_{NHC}), 103.72 (C_{3,4q}), 65.00 (C_{2,5q}), 39.94 (CH₃), 24.52 (CH₂), 22.55 (CH₂), 0.23 (CH₃, TMS). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1983, 1922. ESI-MS (m/z): 487 [M+H]⁺, 509 [M+Na]⁺, 525 [M+K]⁺. Anal. Calcd (%) for C₂₂H₃₄N₂O₃Si₂Fe: C, 54.31; H, 7.04. Found: C, 54.82; H, 6.72.

Dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)[1,3-dibenzylimidazollilidene]iron (10b)

Triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (**8**) 0.077 g (0.018 mmol), trimethylammine-N-oxide 0.021 g (0.28 mmol), 1,3-dibenzylimidazolium bromide 0.060 g (0.018 mmol) and silver oxide 0.051 g (0.022 mmol), 80 °C 3 h. Yield : 61%.

10b has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 CDCl₃) δ (ppm): 7.42-7.18 (10H, CH_{aryl}), 6.82 (s, 2H, CH_{NHC}), 5.6 (br, 4H, NCH₂), 2.49 (m, 4H, CH₂), 1.78-1.72 (m, 4H, CH₂), 0.19 (s, 18H, CH₃, TMS). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 216.14 (CO), 186.32 (C_{carbene}), 177.02 (C=O, Cp), 136.30 (C_{aryl}), 128.75 (CH_{aryl}), 127.88 (CH_{aryl}), 126.81(CH_{aryl}), 123.30 (CH_{aryl}), 103.91 (C_{3,4q}), 70.12 (C_{2,5q}), 55.15 (-NCH₂-), 23.94 (CH₂), 22.04 (CH₂), 0.98 (CH₃, TMS). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1986, 1924. ESI-MS (m/z): 639 [M+H]⁺, 661 [M+Na]⁺, 677 [M+K]⁺. Anal. Calcd (%) for C₃₄H₄₂N₂O₃Si₂Fe: C, 63.93; H, 6.63. Found: C, 64.22; H, 6.21.

Dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)[1-(2-hydroxyethyl))-3methylilidene]iron (10d)

Triscarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)iron (**8**) 0.048 g (0.103 mmol), trimethylammine-N-oxide 0.012 g (0.155 mmol), 3-(2-hydroxyethyl)-1-methylimidazole chloride 0.020 g (0.103 mmol) and silver oxide 0.037 g (0.160 mmol), room temperature, 3 h. Chromatography eluent: dichloromethane/ethyl acetate/MeOH (100/0/0 to 0/0/100). Yield = 13 % **10c** has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 CDCl₃) δ (ppm): 7.27 (d, 1H, -CH_{NHC}), 7.04 (d, 1H, -CH_{NHC}), 4.33 (t, CH₂, NHC), 4.00 (t. 2H, -CH₂, NHC), 3.83 (s, 3H, -NCH₃), 2.52-2.45 (m, 4H, CH₂), 1.85-1.75 (m, 4H, CH₂), 0.18 (s, 18H, CH₃, TMS). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 217.68 (CO), 183.60 (C_{carbene}), 171.22 (C=O, Cp), 126.63 (C_{3,4}, Cp), 124.28 (CH_{NHC}), 120.91 (CH_{NHC}), 75.27 (C_{2,5}, Cp), 59.06 (-CH₂-), 52.66 (-CH₂-), 40.24 (-NCH₃), 25.01 (-CH₂-, Cp), 22.43 (-CH₂-, Cp), 0.21 (CH₃, TMS). IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1986, 1926. ESI-MS (m/z): 517 [M+H]⁺, 539 [M+Na]⁺. Anal. Calcd (%) for C₂₃H₃₆N₂O₄Si₂Fe: C, 53.48; H, 7.02. Found: C, 53.54; H, 6.67.

Dicarbonyl-(2,4-bis(trimethylsilyl)bicyclo[3.3.0]nona-1,4-dien-3-one)[1-(2-BocNH-ethyl)-3-methylilidene]iron (10e)

Triscarbonyl-(η^4 -3,4-bis(4-methoxyphenyl)-2,5-diphenylcyclopenta-2,4-dienone)iron 0.082 g (0.197 mmol), trimethylammine-N-oxide 0.022 g (0.296 mmol), 1-(2-BocNH-ethyl-)-3-methylimidazolium iodide 0.070 g (0.197 mmol) and silver oxide 0.055 g (0.236 mmol), room temperature, 1 h. Yield = 52 %.

10e has been analyzed by IR, ¹H-NMR, ¹³C-NMR, ESI-MS. ¹H-NMR (399.9 CDCl₃) δ (ppm): 7.19 (s, 1H, -CH_{NHC}), 6.98 (s, 1H, -CH_{NHC}), 6.41 (br, 1H, NH), 4.33 (t, CH₂, NHC), 3.85 (s, 6H, -NCH₃), 3.65 (t. 2H, -CH₂, NHC), 2.47 (t, 4H, CH₂), 1.83-1.77 (m, 4H, CH₂), 1.35 (s, 9H, CH₃, BOC), 0.17 (s, 18H, CH₃, TMS). ¹³C-NMR (150.8 MHz, C₇D₈, g-HSQC, g-HMBC) δ (ppm): 217.61 (CO), 184.56 (C_{carbene}), 174.08 (C=O, Cp), 156.66 (C=O, BOC), 123.91 (CH_{NHC}), 121.17 (CH_{NHC}), 103.26 (C_{3,4}, Cp), 78.80 (Cq, BOC), 73.31 (C_{2,5}, Cp), 49.55 (-NCH₂-), 40.16 (-NCH₃), 38.73 (-NCH₂-), 28.32 (CH₃, BOC), 24.87 (-CH₂), 22.47 (-CH₂), 0.29 (CH₃, TMS) IR (CH₂Cl₂, cm⁻¹): (v_{CO}) 1982, 1922. ESI-MS (m/z): 638 [M+Na]⁺, 654 [M+K]⁺. Anal. Calcd (%) for C₂₈H₄₆N₃O₅Si₂Fe: C, 54.53; H, 7.52. Found: C, 54.53; H, 7.10.

X-ray Crystallography.

Crystal data and collection details for $5 \cdot 0.5 C_6 H_{14}$, $7a \cdot thf \cdot C_6 H_{14}$, 7b, 7c and 10a are reported in Table X. The diffraction experiments were carried out on a Bruker APEX II diffractometer equipped with a CCD detector using Mo–K α radiation. Data were corrected for Lorentz polarization and absorption effects (empirical absorption correction SADABS).¹² Structures were solved by direct methods and refined by full-matrix least-squares based on all data using $F^{2.13}$ All hydrogen atoms were fixed at calculated positions and refined by a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters.

The C_6H_{14} molecule of **5**·0.5 C_6H_{14} is located on an inversion center.

The C₆H₁₄ and THF molecules of $7a \cdot thf \cdot C_6H_{14}$ are disordered and, therefore, they have been split into two positions each and refined isotropically using one occupancy parameter per disordered group. The disordered molecules have been restrained to have similar geometries (SAME line in SHELXTL; s.u. 0.02) and similar *U* parameters (SIMU line in SHELXTL; s.u. 0.01). Restraints to bond distances were applied as follow (s.u. 0.02): 1.53 Å for C–C and 1.43 Å for C–O in THF and C₆H₁₄.

	5.0.5C ₆ H ₁₄	7a·thf·C ₆ H ₁₄
Formula	C ₃₇ H ₃₁ FeO ₆	C ₄₈ H ₅₄ FeN ₂ O ₆
Fw	627.47	810.78
Т, К	100(2)	100(2)
λ, Å	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/n$
<i>a</i> , Å	14.3553(2)	9.4831(7)
b, Å	11.8026(2)	23.5286(19)
<i>c</i> , Å	17.6616(3)	19.2990(16)
α, °	90	90
<i>β</i> , °	90.0710(10)	103.518(4)
<i>γ</i> , °	90	90
Cell Volume, Å ³	2992.40(8)	4186.8(6)
Z	4	4

Table S1

Crystal data and experimental details for $3.0.5C_6H_{14}$	1. / a·t	11·C&H14	, 7D,	/ <i>c</i> and <i>10a</i>
--	-----------------	----------	-------	---------------------------

D_c , g cm ⁻³	1.393	1.286
μ, mm ⁻¹	0.552	0.412
F(000)	1308	1720
Crystal size, mm	0.22×0.18×0.14	0.25×0.21×0.16
θ limits, °	1.83-25.03	1.73–26.00
Reflections collected	42504	64046
Independent reflections	5268 [R_{int} = 0.0285]	8231 [R_{int} = 0.0740]
Data / restraints /parameters	5268 / 0 / 397	8231/121/505
Goodness on fit on F ²	1.024	1.023
$R_1 (I > 2\sigma(I))$	0.0335	0.0641
wR_2 (all data)	0.0881	0.1870
Largest diff. peak and hole, e Å ⁻³	1.714 / -0.278	1.401 / -0.827

	7b	7c	10a
Formula	C ₅₀ H ₄₀ FeN ₂ O ₅	C ₄₁ H ₃₈ FeN ₂ O ₅	C ₂₂ H ₃₄ FeN ₂ O ₃ Si ₂
Fw	804.69	694.58	486.54
Т, К	100(2)	100(2)	100(2)
λ, Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic
Space group	$P2_1/n$	$P2_1/n$	Pl
<i>a</i> , Å	14.8500(8)	12.7360(4)	8.3374(2)
<i>b</i> , Å	15.3813(8)	17.9148(5)	10.1477(3)
<i>c</i> , Å	17.4682(10)	15.2500(4)	15.9325(4)
<i>α</i> , °	90	90	75.869(2)
<i>β</i> , °	101.570(3)	95.190(2)	77.444(2)
γ, °	90	90	76.216(2)
Cell Volume, Å ³	3908.9(4)	3465.22(17)	1251.27(6)
Z	4	4	2
D_c , g cm ⁻³	1.367	1.331	1.291
μ, mm ⁻¹	0.439	0.483	0.723
F(000)	1680	1896	516
Crystal size, mm	0.19×0.15×0.12	0.16×0.13×0.10	0.18×0.16×0.11

θ limits, °	1.65–27.00	1.76–26.00	1.34–27.00
Reflections collected	64623	39892	21430
Independent reflections	$8525 [R_{int} = 0.0444]$	$6797 [R_{int} = 0.0844]$	5441 [R_{int} = 0.0497]
Data / restraints /parameters	8525 / 0 / 523	6797 / 18 / 442	5441 / 0 / 279
Goodness on fit on F ²	1.015	1.040	1.016
$R_1 (I > 2\sigma(I))$	0.0336	0.0472	0.0399
wR_2 (all data)	0.0866	0.1309	0.0987
Largest diff. peak and hole, e Å ⁻³	0.370 / -0.428	0.584 / -0.488	0.281 / -0.232

Figure S4. ¹H-NMR spectrum of 5 in CDCl_{3.}

Figure S5. ¹³C-NMR spectrum of 5 in CDCl_{3.}

Figure S6. ¹H-NMR spectrum of 6 in C₇D₈.

Figure S7. ¹³C-NMR spectrum of 6 in C_7D_8 .

Figure S8. ¹H-NMR spectrum of 7a in C_7D_8 .

Figure S9. ¹³C-NMR spectrum of 7a in C_7D_8 .

Figure S10. ¹H-NMR spectrum of 7b in C₇D₈.

Figure S11. ¹³C-NMR spectrum of 7b in C_7D_8 .

Figure S12. ¹H-NMR spectrum of 7c in C₇D₈.

Figure S13. ¹³C-NMR spectrum of 7c in C_7D_8 .

Figure S14. HSQC-NMR spectrum of 7c in C₇D₈.

Figure S15. ¹H-NMR spectrum of 7d in C₇D₈.

Figure S16. ¹³C-NMR spectrum of 7d in C₇D₈.

Figure S17. HMBC-NMR spectrum of 7d in C₇D₈.

the second s

Figure S18. HMBC-NMR spectrum of 7d in C_7D_8 .

Figure S19. ¹H-NMR spectrum of 7e in C₇D₈.

Figure S20. ¹³C-NMR spectrum of 7e in C₇D₈.

Figure S21. HMBC-NMR spectrum of 7e in C₇D₈.

Figure S22. HSQC-NMR spectrum of 7e in C₇D₈.

Figure S23. ¹H-NMR spectrum of 7f in C_7D_8 .

Figure S24. ¹³C-NMR spectrum of 7f in C_7D_8 .

Figure S25. HMBC-NMR spectrum of 7f in C₇D₈.

Figure S26. HSQC-NMR spectrum of 7f in C_7D_8 .

Figure S27. ¹H-NMR spectrum of 10a in CDCl₃.

Figure S28. ¹³C-NMR spectrum of 10a in CDCl₃.

Figure S29. HMBC-NMR spectrum of 10a in CDCl₃.

Figure S30. ¹H-NMR spectrum of 10b in CDCl₃.

Figure S31. ¹³C-NMR spectrum of 10b in CDCl₃.

Figure S32. ¹H-NMR spectrum of 10d in CDCl₃.

Figure S33. ¹³C-NMR spectrum of 10d in CDCl₃.

Figure S34. HMBC-NMR spectrum of 10d in CDCl₃.

Figure S35. HSQC-NMR spectrum of 10d in CDCl₃.

Figure S36. ¹H-NMR spectrum of 10e in CDCl₃.

Figure S37. ¹³C-NMR spectrum of 10e in CDCl₃.

Figure S38. ESI-MS spectrum of 5 in CH₃CN.

Figure S39. ESI-MS spectrum of 6 in CH₃CN.

Figure S40. ESI-MS spectrum of 7a in CH₃CN.

Figure S41. ESI-MS spectrum of 7b in CH₃CN.

Figure S42. ESI-MS spectrum of 7c in CH₃CN.

Figure S43. ESI-MS spectrum of 7d in CH₃CN.

Figure S44. ESI-MS spectrum of 7e in CH₃CN.

Figure S45. ESI-MS spectrum of 7f in CH₃CN.

Figure S46. ESI-MS spectrum of 10a in CH₃CN.

Figure S47. ESI-MS spectrum of 10b in CH₃CN.

Figure S48. ESI-MS spectrum of 10d in CH₃CN.

Figure S49. ESI-MS spectrum of 10e in CH₃CN.

References

- ¹ (a) H. K. Gupta, N. Rampersad, M. Stradiotto and M. J. McGlinchey, Organometallics, 2000, 19,
- 184; (b) T. Rukachalsirkul, S. Arabl, F. Harstock, N. J. Taylor and A. J. Carty, *Organometallics*, 1984, **3**, 1587; (c) G. G. Cash and R. C. Pettersen, *Inorg. Chem.*, 1978, **17**, 650; (d) I. Emme, T. Labahn and A. de Meijere, *Eur. J. Org. Chem.*, 2006, 399.
- ² (a) A. M. Oertel, V. Ritleng, L. Burr, C. Harwig and M. J. Chetcuti, *Organometallics*, 2011, 30, 6685; (b) L. B. Benac, E. M. Burgess, L. Burr and A. J. Arduengo, *Organic Syntheses, Coll.*, 1990, 7, 195; 1986, 64, 92.
- ³ S. Patil, J. Claffey, A. Deally, M. Hogan, B. Gleeson, L. M. Menéndez Méndez, H. Müller-Bunz,
 F. Paradisi and M. Tacke, *Eur. J. Inorg. Chem.*, 2010, 7, 1020.
- ⁴ L. C. Branco, J. N. Rosa, J. J. Moura Ramos and C. A. M. Afonso, *Chem. Eur. J.*, 2002, **8**, 3671.
- ⁵ L. Busetto, M. C. Cassani, C. Femoni, A. Macchioni, R. Mazzoni and D. Zuccaccia, J. *Organomet. Chem.*, 2008, **693**, 2579.
- ⁶ (a) L. Jafarpour, E. D. Stevens and S. P. Nolan, *J. Organomet. Chem.*, 2000, **606**, 49; (b) A. J. Arduengo, R. Krafczyk, H. A. Schmutzler, J. Craig, R. Goerlich, W. J. Marshall and M. Unverzagt, *Tetrahedron*, 1999, **55**, 14523.
- ⁷ W. Chen and F. Liu, J. Organomet. Chem., **2003**, 673, 5.
- ⁸ S. Patil, A. Deally, F. Hackenberg, L. Kaps, H. Muller-Bunz, R. Schobert and M. Tacke *Helv*. *Chim. Acta*, 2011, **94**, 1551.
- ⁹ S. Hameury, P. de Frémont, P. -A. R. Breuil, H. Olivier-Bourbigou and P. Braunstein, *Dalton Trans.*, 2014, **43**, 4700.
- ¹⁰ D. V. Partyka and N. L. Deligonul, *Inorg. Chem.*, 2009, **48**, 9463.
- ¹¹ K. R. J. Thomas, M. Velusamy, J. T. Lin, C. H. Chuen and Y. T. Tao, *J. Mater. Chem.*, 2005, **15**, 4453.
- ¹² Sheldrick, G. M. SADABS, Program for empirical absorption correction, University of Göttingen,

Germany, 1996

¹³ Sheldrick, G. M. SHELX97, Program for crystal structure determination, University of Göttingen,

Germany, 1997