Supporting information for

Gallium(III)Corrole-BODIPY Hybrid: Novel Photophysical Properties and First Observation of B-F---F interactions

Biju Basumatary, R.V. Ramana Reddy, Subhrajyoti Bhandary and Jeyaraman Sankar*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore bypass road, Bhopal, India-462066. E-mail: sankar@iiserb.ac.in; Fax: +91-755-6692392; Tel: +91-755-6692-334 **Table of Contents**

1)	Experimental section	3 – 4
2)	Mass spectra of compound 2	S1
3)	Mass spectra of compound 3a	S2
4)	Mass spectra of compound 3b	S3
5)	¹ H, ¹⁹ F, ¹¹ B NMR spectra of compound 4	S4 – S6
6)	¹ H- ¹ H COSY of 4	S7
7)	¹ H- ¹ H ROESY of 4	S8
8)	¹ H- ¹³ C HSQC of 4	S9
9)	¹ F- ¹ F COSY of 4	S10
10)	Mass spectra of 4	S11
11)	Molecular structure of ref. BODIPY	S12
12)	UV-Vis spectra of 4 in various solvent	S13
13)	Emission spectra of 4 in various solvent	S14
14)	Fluorescence decay plots of 4 in various solvent	S15
15)	Spectroscopy data of 4 in various solvent	Table S1
16)	Intermolecular hydrogen bonding (C-HF) in 4M.Py.Hex	S16
17)	Intermolecular C-HF and C-FF-C contact in 4O.Py.Tol	S17
18)	Intramolecular C-F F-B contact in 4O.Py.Tol	S18
19)	Crystal packing diagram of 4M.Py.Hex	S19
20)	Crystal packing diagram of 4O.Py.Tol	S20
21)	Crystal packing diagram of 2	S21
22)	Crystallographic data of 4M.Py.Hex & 4O.Py.Tol	Table S2
23)	Frontier molecular orbital plots of 4	S22
24)	List of Cartesian Coordinates for compound 4 in Vacuum	Table S3
25)	List of Cartesian Coordinates for compound 4 in Toluene	Table S4
26)	List of Cartesian Coordinates for compound 4 in DMSO	Table S5
27)	Cyclic voltammograms of 4 in various solvents	S23-S24

Experimental section:

Instruments and experimental methods: ¹H, ¹³C, ¹⁹F and ¹¹B NMR spectra were recorded on Bruker 400 and 500 MHz using CDCl₃ as a solvent. Chemical shifts were given in parts per million relative to residual CHCl₃ (7.260 ppm). Two-dimensional (2D) NMR experiments were performed on a Bruker 500 MHz instrument. UV-Vis absorption experiments were performed on an Agilent Cary-100 with 1cm path length guartz cuvette and fluorescence emission spectra were recorded on a Horiba Fluorolog spectrophotometer. Matrix assisted LASER desorption/ionization (MALDI) were recorded on a Bruker ultra flextreme mass spectrometer. Cyclic voltammograms were carried out using a threeelectrode system consisting of a Pt disk as working electrode, Ag/Ag⁺ reference electrode and a Ptwire as counter electrode on a CH-Instrument potentiostat. Tetrabutylammonium hexafluorophosphate (TBAPF) was used as supporting electrolyte (0.1 M).

Crystal growth and X-ray crystal structures determination: Single crystal of **4M.Py.Hex** was obtained by slow diffusion of hexane into dichloromethane solution of **4** in presence of small amount of pyridine at 4°C. Single crystal of **4O.Py.Tol** was obtained by slow diffusion of hexane into dichloromethane/toluene(1:1, ν/ν) solution of **4** in presence of small amount of pyridine at 4°C. X-ray diffraction measurements were carried out at 120 K (**4M.Py.Hex**) and 100 K (**4O.Py.Tol**), on Bruker APEX II diffractometer equipped with a graphite monochromator and Mo K α ($\lambda = 0.71073$ Å) radiation. Data collections were performed using ϕ and ω scans. The structures were solved using direct methods followed by full matrix least square refinements against F² (all data HKLF 4 format) using SHELXTL (Sheldrick, G. M. (2013). SHELXT, Universität Göttingen, Germany). Multiscan absorption correction and scaling was performed with SADABS¹. All refinements were carried out using SHELXL 2014.1,² PLATON³ program and WinGX v2014.1.⁴

Synthesis of compound 2: Compound 1 (200 mg, 0.25 mmol) and GaCl₃ (441 mg, 2.5 mmol) was dissolved in 50 ml of dry pyridine under Argon, refluxed for 2 hrs and allowed to cooled at room temperature. Solvent was evaporated to dryness under reduced pressure and subjected to column chromatography with silica gel (100-200 mesh) using hexane/CH₂Cl₂/pyridine (80:20:0.5, *v/v/v*) as eluent. Precipitation with hexane and few drops of CH₂Cl₂ gave desired product. Yield = 86.6 % (205 mg, 0.22 mmol), purple coloured crystalline solid. ¹H NMR (400 MHz, CDCl₃, 298 K): δ 9.2 (d, ³*J*_{H-H} = 4.0 Hz, 2H), 8.87 (d, ³*J*_{H-H} = 4.5 Hz, 2H), 8.80 (d, ³*J*_{H-H}, *J* = 4.0 Hz, 2H), 8.66 (d, ³*J*_{H-H} = 4.5 Hz, 2H), 6.53 (m, 1H), 5.96 – 5.76 (m, 2H), 3.50 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -137.61 – 137.92 (m, 6F), -153.71 (t, ³*J*_{F-F} = 20.9 Hz, 2F), -153.90 (t, ³*J*_{F-F} = 20.9 Hz, 1F), -162.19 – -162.48 (m, 4F), -162.57 (m, 2F). MS (MALDI-TOF, without matrix): Calculated for C₃₇H₈F₁₅GaN₄ [(M-Py)⁺]: 861.9765, Observed: m/z 862.196. Anal. calc. for C₄₂H₁₃F₁₅GaN₅ (Fw: 941.019) C, 53.53; H, 1.39; N, 7.43. Found: C, 53.49; H, 1.43; N, 7.46

Synthesis of 3a and 3b: Freshly distilled POCl₃ (2.5 ml) was slowly added to DMF (3.5 ml), cooled in an ice bath under argon atmosphere and stirred for 10 minute. After warming to room temperature, the Vilsmeier complex was stirred for 30 minutes and diluted by adding 10 ml of dry CH₂Cl₂. This solution was added dropwise to ice cold CH₂Cl₂ solution of **2** (200 mg, 0.21 mmol) in 10 ml. During addition, the solution color turned from red to green. After 5-6 minutes ice was removed and stirred for another 10 minutes. This reaction mixture was added dropwise into a saturated aqueous solution of K_2CO_3 (600 ml) cooled in an ice bath with continuous stirring. After warming to room temperature, the reaction mixture was further stirred overnight and extracted with CH₂Cl₂. The organic layers were combined, washed with water, dried over anhydrous NaSO₄ and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (100-200 mesh) using hexane/CH₂Cl₂/pyridine (80:20:0.5, v/v/v) as an eluent, and recrystallization with hexane/CH₂Cl₂ and few drops of pyridine gave 3a. Yield = 9.8%, (22 mg, 0.02 mmol), green solid. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 10.54 (s, 1H), 9.68 (s, 1H), 9.13 (d, ³J_{H-H} = 4.1 Hz, 1H), 8.78 (d, ${}^{3}J_{H-H} = 4.5$ Hz, 1H), 8.75 (d, ${}^{3}J_{H-H} = 4.1$ Hz, 1H), 8.70 (d, ${}^{3}J_{H-H} = 4.7$ Hz, 1H), 8.55 (d, ${}^{3}J_{\text{H-H}}$ = 4.5 Hz, 1H), 8.51 (d, ${}^{3}J_{\text{H-H}}$ = 4.4 Hz, 1H), 6.79 (t, ${}^{3}J_{\text{H-H}}$ = 7.6 Hz, 1H), 6.02 (t, ${}^{3}J_{\text{H-H}}$ = 6.7 Hz, 2H), 3.33 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃): δ -137.36 - -138.07 (m, 4H), -138.57 (d, ${}^{3}J_{\text{H-H}}$ $_{\rm H}$ = 7.8 Hz, 1H), -138.63 (³J $_{\rm H-H}$, J = 7.9 Hz, 1H), -152.94 (m, 3H), -161.73 (m, 2 H), -161.97 (m, 2H), -162.28 (m, 2H). MS (MALDI-TOF, without matrix): Calculated for $C_{38}H_8F_{15}GaN_4O$ [(M-Py)⁺]:

889.9714, Observed: m/z 890.201. Anal. calc. for $C_{43}H_{13}F_{15}GaN_5O$ (Fw: 969.014) C, 53.23; H, 1.35; N, 7.22. Found: C, 53.17; H, 1.45; N, 7.26

Further, elution with hexane/CH₂Cl₂/pyridine (60:40:1, v/v/v) as eluent followed by recrystallization with hexane/CH₂Cl₂ and few drops of pyridine gave **3b**. Yield = 62% (142 mg, 0.13 mmol), green solid. ¹H NMR (500 MHz, CDCl₃): δ 11.15 (s, 1H), 10.59 (s, 1H), 10.04 (s, 1H), 9.03 (s, 1H), 8.70 (d, ${}^{3}J_{\text{H-H}} = 4.6$ Hz, 1H), 8.63 (d, ${}^{3}J_{\text{H-H}} = 4.7$ Hz, 1H), 8.41 (t, J = 4.6 Hz, 2H), 7.22 (tt, ${}^{3}J_{\text{H-H}} = 7.7$ Hz, ${}^{4}J_{\text{H-H}} = 1.5$ Hz, 2H), 6.60 (m, 4H), 5.54 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃): δ -137.71 (m, 4F), -139.17 (d, ${}^{3}J_{\text{F-F}} = 7.8$ Hz, 1F), -139.22 (d, ${}^{3}J_{\text{F-F}} = 7.9$ Hz, 1H), -151.82 (t, ${}^{3}J_{\text{F-F}} = 20.8$ Hz, 1F), -152.41 (t, ${}^{3}J_{\text{F-F}} = 20.8$ Hz, 1F), -152.75 (t, ${}^{3}J_{\text{F-F}} = 20.8$ Hz, 1F), -161.14 (td, ${}^{3}J_{\text{F-F}} = 22.9$ Hz, ${}^{4}J_{\text{F-F}} = 7.4$ Hz, 2F), -161.53 (td, ${}^{3}J_{\text{F-F}} = 23.7$ Hz, ${}^{4}J_{\text{F-F}} = 8.1$ Hz, 2F), -162.39 (td, ${}^{3}J_{\text{F-F}} = 24.0$ Hz, ${}^{4}J_{\text{F-F}} = 8.0$ Hz, 2F). MS (MALDI-TOF, without matrix): Calculated for C₃₉H₈F₁₅GaN₄O₂ [(M-2Py)⁺]: 917.9664, Observed: m/z 918.204. Anal. calc. for C₄₉H₁₈F₁₅GaN₆O₂ (Fw: 1076.051) C, 54.62; H, 1.68; N, 7.80. Found: C, 54.54; H, 1.77; N, 7.82

Synthesis of compound 4: 3b (100 mg, 0.093 mmol) and 2,4-dimethylpyrrole (40.2 μ l, 0.39 mmol) were dissolved in 50 ml of dry CH₂Cl₂ and degassed with Argon for 30 minutes. Calatytic amount of TFA (10 μ l) was added, and the solution was stirred for 4 hrs at room temperature under argon. The weak red colored fluorescence of the solution gradually intensifies as the reaction progress. When thin layer chromatography (TLC) shows complete consumption of aldehyde, dichloromethane (5 ml) solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 22 mg, 0.093 mmol) was added, and stirring was continued for 30 minutes. Then two drop of N,N-diisopyropylethylamine (DIPEA) was added, stirred for another 5 minutes, and the solvent was concentrated (~20 ml) under reduced pressure. This crude product was partially purified by passing it through silica gel column (60-120 mesh) using hexane/CH₂Cl₂/pyridine (50:50:0.02, *v/v/v*) as eluent, and all collected solvent fractions were evaporated to dryness to afford dark greenish coloured sticky product.

The partially purified product was dissolved in 50 ml of dry CH₂Cl₂ under Argon atmosphere and 1 ml of DIPEA was added slowly to it and stirred for 30 minutes at room temperature. Then, 1 ml of BF₃.OEt₂ was added to the ice cold reaction mixture and stirred for 5 minutes. Ice bath was removed and stirred for another 2 hrs at room temperature. The reaction mixture was concentrated under reduced pressure and filtered through silica gel (100-200 mesh) column chromatography using CH₂Cl₂/pyridine (100:0.5, v/v) as eluent. Three subsequent silica gel (100-200 mesh) column chromatography using hexane/CH₂Cl₂/pyridine (70:30:0.5, v/v/v) as eluent was performed and recrystallization with hexane/CH₂Cl₂ with small amount of pyridine afforded 4. Yield = 9.2% (13 mg, 0.0085 mmol), dark greenish solid. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 8.92 (d, ³J_{H-H} = 4.5 Hz, 1H), 8.75 (s, 1H), 8.74 (s, 1H), 8.71 (s, 1H), 8.68 (d, ${}^{3}J_{H-H} = 4.6$ Hz, 1H), 8.62 (d, ${}^{3}J_{H-H} = 4.6$ Hz, 1H), 6.93 (m, 1H), 6.09 (m, 2H), 5.90 (s, 4H), 3.58 (d, ${}^{3}J_{H-H} = 4.3$ Hz, 2H), 2.66 (s, 6H), 2.60 (s, 6H), 0.64 (s, 6H), 0.59 (s, 6H). ¹¹B NMR (160 MHz, CDCl₃): δ 0.90 (m, -BF₂, 2B). ¹⁹F NMR (471 MHz, CDCl₃): δ -137.58 (d, ${}^{3}J_{F-F} = 20.6$ Hz, 2F), -137.70 (dd, ${}^{3}J_{F-F} = 24.1$ Hz, ${}^{4}J_{F-F} = 7.6$ Hz, 2F), -138.26 $(dd, {}^{3}J_{F-F} = 23.8 \text{ Hz}, {}^{4}J_{F-F} = 7.2 \text{ Hz}, 2F), -145.38 - -146.61 \text{ (m, 3F)}, -147.20 \text{ (m, 1F)}, -149.90 \text{ (q, } {}^{3}J_{F-F} = 7.2 \text{ Hz}, 2F)$ = 19.8 Hz, 1F), -152.48 (t, ${}^{3}J_{F-F}$ = 20.8 Hz, 1F), -152.91 (t, J = 20.9 Hz, 1F), -161.41 (td, ${}^{3}J_{F-F}$ = 23.9 Hz, ${}^{4}J_{F-F}$ 8.0 Hz, 2F), -161.91 (td, ${}^{3}J_{F-F}$ = 23.9 Hz, ${}^{3}J_{F-F}$ = 7.9 Hz, 2F), -163.99 - -164.49 (m, 2F). MS (MALDI-TOF, without matrix): Calculated for C₆₃H₃₄F₁₈B₂GaN₈ [(M-Py)⁺]: 1335.2061, Observed: m/z 1335.465. Anal. calc. for C₆₈H₃₉B₂F₁₉GaN₉ (Fw: 1433.247) C, 56.94; H, 2.74; N, 8.79. Found: C, 56.82; H, 2.81; N, 8.85

Fig. S1: Mass spectra of compound 2. Inset: represent isotopic pattern of molecular ion peak.

Fig. S2: Mass spectra of compound 3a. Inset: represent isotopic pattern of molecular ion peak

Fig. S3: Mass spectra of compound 3b. Inset: represent isotopic pattern of molecular ion peak

Fig. S4: ¹H-NMR of 4 in CDCl₃ at 298 K.

1.35 1.14 0.93 0.87 0.46

Fig. S6: ¹¹B-NMR of compound **4** in CDCl₃ at 298 K.

Fig. S7: ¹H-¹H COSY of compound **4** in CDCl₃ at 298 K.

Fig. S8: ¹H-¹H ROESY of compound 4 in CDCl₃ at 298 K.

Fig. S9: ¹H-¹H HSQC of compound **4** in CDCl₃ at 298 K.

Fig. S10: ¹⁹F-¹⁹F COSY of compound 4 in CDCl₃ at 298 K.

Fig. S11: MALDI-TOF (without matrix) mass spectra of compound 4. Inset: represent isotopic pattern of molecular ion peak.

Fig. S12: Molecular structure of 4,4-difluoro-8-(2,4,6-trimethylphenyl)-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-*s*-indacene(**ref. BODIPY**).

Fig. S13: UV-Vis absorption spectra of 4 (1.2x 10⁻⁶ M) in various solvents.

Fig. S14: Emission spectra of 4 (1.2x 10⁻⁶ M) in various solvents. Excitation λ = 423 nm

Fig. S15. Fluorescence emission decay plots of 4 in various solvents.

|--|

Solvent	Dielectric constant(ε) ⁵	$\lambda_{\rm max},{\rm nm}~(\varepsilon imes 10^{-4},{ m M}^{-1}~{ m cm}^{-1})$	$\lambda_{em} (nm)^a$	$\Phi_{\mathrm{fl}}{}^{\mathrm{b}}$	τ (ns)
Hexane	1.89	421 (13.0), 505 (7.0), 580-600	611	0.118	1.78
1,4-Dioxane	2.21	421 (11.0), 506 (5.8), 578-602	610	0.129	2.28
Toluene	2.38	423 (13.2), 508 (7.3), 482-603	614	0.122	1.74
CH ₃ Cl	4.81	420 (15.6), 506 (7.6), 580-598	613	0.068	1.85
THF	7.52	422 (15.1), 503 (7.8), 582-608	625	0.063	2.40
CH ₂ Cl ₂	9.14	420 (15.4), 504 (7.7), 581-604	620	0.054	1.94
Acetone	20.7	423 (16.8), 497 (7.8), 587-610	n.d ^c	-	-
МеОН	33.6	422 (17.3), 496 (7.7), 590-610	n.d	-	-
DMF	36.7	423 (15.7), 500 (7.6), 589-609	n.d	-	-
CH ₃ CN	37.5	422 (15.5), 497 (6.7), 586-612	n.d	-	-
DMSO	48.9	424 (8.3), 501 (4.5), 584-606	n.d	-	-

^aExcitation at $\lambda = 423$ nm. ^bQuantum yield were measured with respect to Zn(TPP) in toluene, $\Phi_{fl} = 0.033$. n.d = not detecteble. ^cvery weak emission was detected.

Fig. S16: Unit cell diagram of **4M.Py.Hex** showing intermolecular hydrogen bonding (C-H----F). Solvent molecules were removed for clarity.

Fig. S17: Unit cell diagram of **40.Py.Tol** showing intermolecular hydrogen bonding (C-H·····F) and C-F·····F-C contact. Solvent molecules were removed for clarity.

Fig. S18: Diagram representing intramolecular short C-H·····F-B contact in 40.Py.Tol. Solvent molecules, hydrogen and $meso/\beta$ -substituents are omitted for clarity.

Fig. S19: Crystal packing diagram of 4M.Py.Hex. Pyridine and hexane as lattice solvent molecules. Hydrogen molecules were removed for clarity.

Fig. S20: Crystal packing diagram of **4O.Py.Tol.** Pyridine and toluene as lattice solvent molecules. Hydrogen molecules were removed for clarity.

Fig. S21: Crystal packing diagram of Ga(tpfc).Py (2). p-xylene as lattice solvent molecules.⁶

Table	S2.	Crystallographic	data	for	compound	4	in	monoclinic	(4M.Py.Hex)	and	orthorhombic
(4 O . P ₂	y.To	I) crystal forms.									

Data	4M.Py.Hex	4O.Py.Tol
Formula	'C91 H66 B2 F19 Ga N13'	'C85 H57 B2 F19 Ga N11'
Formula weight	1793.90	1684.75
Temperature/K	120(2)	100(2)
Wavelength (Å)	0.71073	0.71073
CCDC number	1425331	1411468
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1/c$	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	16.260(6)	14.5257(16)
<i>b</i> (Å)	17.452(6)	16.4162(18)
<i>c</i> (Å)	29.954(9)	31.249(3)
α (°)	90	90
β (°)	97.616(11)	90
$\gamma(^{\circ})$	90	90
$V(Å^3)$	8425(5)	7451.6(13)
Z	4	4
Density(g cm ⁻³)	1.414	1.502
μ (mm ⁻¹)	0.424	0.473
F (000)	3660	3424
h _{min, max} , k _{min, max} , l _{min, max}	(-19, 19), (-21, 21), (-36, 36)	(-16, 16,), (-19, 19), (-36, 36)
No. of ref.	334319	164870
No. of unique ref./ obs.	16142, 11888	12354, 9066
Ref.		
No. parameters	1108	1002
R _{all} , R _{obs}	0.0957, 0.0658	0.1062, 0.0680
wR2 _{all} , wR2 _{obs}	0.1815, 0.1629	0.1761, 0.1570
$\Delta \rho_{\min, \max} (e \text{\AA}^{-3})$	-0.537, 0.693	-0.400, 1.263
G. O. F.	1.050	1.043

Computational details:

All computational investigations were performed with Gaussian 09 program.⁷ The calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three parameter hybrid exchange functional and Lee–Yang–Parr correlation function) level, employing basis sets B3LYP/6-31G* (H, B, C, N, F) + LANL2DZ (Ga) level in vacuum, IEF-PCM (Toluene and DMSO).

Fig. S22: Frontier molecular orbital plot of compound **4** in three dielectric medium obtained by DFT calculations at the B3LYP/6-31G* (H, B, C, N, F) + LANL2DZ (Ga) level in vacuum, IEF-PCM (Toluene and DMSO). Representations of energy levels are not to scale.

 Table S3. List of Cartesian Coordinates for compound 4 in Vacuum:

Center	Atomic Atomic			Coordinates (Angstroms)			
Number	Number	• Тур	e	X	Y		Ζ
1	6	0	-0.75	9831	1.22411	7 0.0	20035
2	6	0	-2.16	6392	1.434254	4 0.0	31320
3	6	0	-2.77	5676	0.17997	7 0.0	32837
4	6	0	-1.71	4009	-0.81056	6 0.0	20478
5	7	0	-0.53	8092	-0.12255	0.0	12483
6	6	0	-1.69	0756	-2.23598	8 0.0	05532
7	6	0	-0.50	6529	-3.01491	8 -0.0)07856

8	6	0	-0.416389	-4.453498	-0.045116
9	6	0	0.910560	-4.798014	-0.054533
10	6	0	1.681035	-3.581154	-0.021292
11	7	0	0.796094	-2.529401	0.005137
12	6	0	3.094121	-3.440677	-0.022272
13	6	0	3.809803	-2.216266	-0.019141
14	6	0	5.239211	-2.026095	0.014563
15	6	0	5 481440	-0 677992	0.016604
16	6	0	4.211552	0.004918	-0.016138
17	7	0	3.224668	-0.972286	-0.034785
18	6	0	3 986852	1 402486	-0.019586
19	6	Õ	2,695285	2.005048	-0.019820
20	6	õ	2 254409	3 368991	-0.040081
21	6	Ő	0.858276	3 368331	-0.021950
21	6	Ő	0.452399	1 996864	0.006236
22	7	0	1 578716	1 228047	0.000230
$\frac{23}{24}$	6	0	-4 242847	-0.055179	0.009370
25	6	0	-4.242047	-0.033179	-1 173183
25	6	0	4 00//12	0.206558	1 257850
20	6	0	-4.904412	-0.290338	0.022114
21	07	0	6 275262	4.550008	-0.023114
20	6	0	-0.273202	-0.380270	1.2/4/90
29	6	0	-0.070399	-0.740303	2.333740
21	6	0	-3.301344	-0.34/9/3	2,617250
22	0	0	-4.4403/0	-0.2/2038	2.01/230
32 22	0	0	-4.332972	0.203439	-2.321480
22 24	0	0	-5./0205/	0.139080	-3.290313
34	6	0	-6.//8583	-0.192350	-2.45//14
35	/	0	-0.332350	-0.28/40/	-1.189/3/
30	5	0	-/.166158	-0./95414	0.020170
3/	9	0	-8.34/99/	-0.0/1680	0.135168
38	9	0	-7.444504	-2.160693	-0.138349
39	6	0	-3.0/3412	-0.002770	3.15/36/
40	6	0	-8.0/6966	-1.0/5/8/	2.930552
41	6	0	-3.200010	0.619398	-3.062289
42	6	0	-8.198629	-0.457285	-2.838840
43	6	0	-3.519522	-3.514344	1.17//19
44	6	0	-4.733340	-4.194/26	1.194184
45	6	0	-5.444339	-4.35/460	0.007213
46	6	0	-4.931458	-3.849556	-1.183884
47	6	0	-3.711540	-3.180483	-1.172349
48	6	0	-2.983023	-2.982809	0.003027
49	9	0	-3.233997	-2.706730	-2.338070
50	9	0	-5.609720	-4.007803	-2.324380
51	9	0	-6.606681	-5.005325	0.011581
52	9	0	-5.222452	-4.686635	2.338498
53	9	0	-2.860846	-3.359493	2.341113
54	6	0	-0.248263	5.260691	1.171851
55	6	0	-0.669764	4.940201	-1.218491
56	7	0	-1.549672	6.028168	-1.231412
57	6	0	-2.014807	6.195263	-2.485033
58	6	0	-1.437904	5.218231	-3.321877
59	6	0	-0.589048	4.425795	-2.556058
60	6	0	0.234863	5.055514	2.508654
61	6	0	-0.317816	6.075544	3.274664
62	6	0	-1.123086	6.877904	2.439964

62	7	Δ	1 001 471	6 205605	1 106063
63	/	0	-1.0814/1	6.385695	1.186862
64	3	0	-1.889283	6.946506	-0.020818
65	9	0	-1.49/540	8.256341	-0.291880
66	9	0	-3.254828	6.892545	0.253575
67	6	0	0.235279	3.293968	-3.095692
68	6	0	-2.983951	7.272867	-2.848/62
69	6	0	1.124204	3.975556	3.052291
70	6	0	-1.927198	8.082475	2.807241
71	6	0	5.164540	2.311812	-0.005954
72	6	0	3.899513	-4.696890	-0.026327
73	6	0	6.024164	2.427031	-1.103909
74	6	0	7.116997	3.290403	-1.101888
75	6	0	7.368185	4.078000	0.019704
76	6	0	6.528513	3.993720	1.128601
77	6	0	5.447424	3.116967	1.103343
78	6	0	3.923449	-5.558539	1.077268
79	6	0	4.668496	-6.735412	1.084614
80	6	0	5.428152	-7.075362	-0.032212
81	6	0	5.431802	-6.239379	-1.146184
82	6	0	4.670637	-5.072842	-1.133121
83	9	0	4.668076	-7.534050	2.158639
84	9	0	6.150579	-8.198778	-0.034726
85	9	0	3.215018	-5.260969	2.176123
86	9	0	4.692412	-4.300457	-2.228720
87	9	0	6.156357	-6.566717	-2.222801
88	9	0	5.800236	1.697551	-2.208577
89	9	0	4.667511	3.048796	2.197606
90	9	0	6.772699	4.743329	2.208879
91	9	0	8.410648	4.911540	0.032117
92	9	0	7.917337	3.377495	-2.169882
93	1	0	-2.677600	2.387964	0.040730
94	1	0	-1.260653	-5.128651	-0.067663
95	1	0	1.318606	-5.798418	-0.090477
96	1	0	5,976964	-2.815699	0.043684
97	1	Õ	6 448863	-0 195651	0.046558
98	1	Ő	2 883371	4 249140	-0.069642
99	1	Ő	-5 586557	-0.602713	4 482721
100	1	0	-5 769837	0 313645	-4 365880
101	1	Ő	-3 110676	0.045676	4 250583
102	1	Ő	-2 658612	0.940050	2 787851
103	1	Ő	-2.368713	-0 794316	2.882097
104	1	Ő	-8 761676	-0 274789	2 633855
105	1	Ő	-8 154334	-1 233283	4 009512
106	1	0	-8 408824	-1 982516	2 412870
107	1	Ő	-2 442808	-0 115916	-2 775384
108	1	0	-3 240949	0.655897	-4 156000
100	1	0	-2 852644	1 595847	-2 707293
110	1	0	-8.482813	-1 480514	-2 567179
111	1	0	-8 334743	-0.325600	-3 915401
112	1	0	8 8783/3	0.212076	2 302753
112	1	0	-0.070343	5 1120/0	-2.302/33
117	1	0	-1.023067	6 737757	/ 33555/
114	1	0	-0.109330	2 220126	-7 778860
115	1	0	-0.10/433	2.520120	-2.720000
117	1	0	1 200625	3 381216	- 1 .100090
11/	1	U	1.207033	5.504540	-2.013321

118	1	0	-3.910124	7.168219	-2.273177
119	1	0	-2.572151	8.257820	-2.604865
120	1	0	-3.218273	7.233664	-3.915727
121	1	0	1.162570	4.049466	4.144262
122	1	0	2.150406	4.042380	2.675175
123	1	0	0.758470	2.975944	2.793637
124	1	0	-1.819245	8.305627	3.871834
125	1	0	-2.985708	7.920844	2.577338
126	1	0	-1.608334	8.952231	2.222723
127	31	0	1.320522	-0.686804	0.004537
128	6	0	2.207156	0.094709	3.035344
129	6	0	0.592888	-1.551544	3.055042
130	6	0	2.292214	0.091573	4.425692
131	1	0	2.824835	0.762960	2.445360
132	6	0	0.612203	-1.618519	4.446454
133	1	0	-0.066829	-2.190668	2.478388
134	1	0	2.984667	0.762525	4.923601
135	1	0	-0.040732	-2.316425	4.960250
136	6	0	0.349633	-1.342290	-3.040510
137	6	0	2.297541	-0.107880	-3.053018
138	6	0	0.324489	-1.403543	-4.432006
139	1	0	-0.425469	-1.820426	-2.451259
140	6	0	2.349945	-0.119534	-4.445142
141	1	0	3.067383	0.389987	-2.473370
142	1	0	-0.479796	-1.932358	-4.932990
143	1	0	3.167301	0.377424	-4.957529
144	6	0	1.344274	-0.780001	-5.149791
145	6	0	1.479254	-0.781739	5.147269
146	7	0	1.315797	-0.705617	-2.355713
147	7	0	1.373761	-0.711254	2.353804
148	1	0	1.521242	-0.809942	6.232442
149	1	0	1.356551	-0.810322	-6.235691

 Table S4: List of Cartesian Coordinates for compound 4 in Toluene:

Center	Atomic	Aton	nic Coor	dinates (An	gstroms)
Numbe	Number	Тур	e X	Y	Z
1	6	0	-0.761350	1.220477	0.014616
2	6	0	-2.166990	1.435172	0.028200
3	6	0	-2.779975	0.182155	0.029441
4	6	0	-1.721840	-0.811366	0.013286
5	7	0	-0.544334	-0.126996	0.004687
6	6	0	-1.702845	-2.237481	-0.005222
7	6	0	-0.521967	-3.020781	-0.020232
8	6	0	-0.436857	-4.460254	-0.059951
9	6	0	0.889003	-4.809035	-0.068172
10	6	0	1.663420	-3.593911	-0.031590
11	7	0	0.781856	-2.539613	-0.005558
12	6	0	3.077002	-3.457996	-0.028016
13	6	0	3.797656	-2.235692	-0.020074
14	6	0	5.228137	-2.051067	0.021444
15	6	0	5.475045	-0.703600	0.027269

16	6	0	1 207195	0.016574	0 010000
10	07	0	4.20/183	-0.0103/4	-0.010898
1/	/	0	3.21/190	-0.990261	-0.036/5/
18	6	0	3.987064	1.381564	-0.012384
19	6	0	2.697402	1.988631	-0.016494
20	6	0	2.263208	3.354503	-0.035958
21	6	0	0.866905	3.359383	-0.022299
22	6	0	0.454211	1.989523	0.003207
23	7	0	1.577317	1.216696	0.008142
24	6	0	-4.248056	-0.046108	0.043366
25	6	0	-4 969964	-0 006349	-1 164307
26	6	Ő	-4 905111	-0 278980	1 266578
20	6	0	-0.017087	1 5/19758	-0.025846
27	07	0	6 270/75	0 5/0/07	1 202566
20	6	0	-0.279473	-0.349497	2 575977
29	0	0	-0.007282	-0.703878	2.3/30//
30	6	0	-5.551232	-0.520812	3.415516
31	6	0	-4.438294	-0.25/148	2.622812
32	6	0	-4.569881	0.269340	-2.514992
33	6	0	-5.724741	0.173644	-3.284150
34	6	0	-6.800493	-0.163144	-2.439479
35	7	0	-6.348536	-0.261334	-1.172201
36	5	0	-7.178494	-0.751886	0.044482
37	9	0	-8.351369	-0.007667	0.165574
38	9	0	-7.488620	-2.112819	-0.108214
39	6	0	-3.059808	0.000876	3.154451
40	6	0	-8.073930	-1.021745	2.967732
41	6	0	-3.216133	0.607428	-3.063964
42	6	Õ	-8 225374	-0 408050	-2.816645
43	6	Ő	-3 540745	-3 509951	1 160748
44	6	0	-4 756238	-4 187200	1 172687
15	6	0	-5 462772	-1 3/8/51	-0.016517
45	6	0	-3.402772	2 9 1 2 0 1 6	1 205254
40	0	0	-4.943094	-3.843040	-1.203234
4/	0	0	-3.722822	-3.1/6024	-1.18943/
48	0	0	-2.998020	-2.979552	-0.011660
49	9	0	-3.24201/	-2./04428	-2.3541/5
50	9	0	-5.618582	-4.001372	-2.349351
51	9	0	-6.628501	-4.993815	-0.017116
52	9	0	-5.251926	-4.677548	2.315805
53	9	0	-2.887657	-3.357456	2.326981
54	6	0	-0.230782	5.257309	1.170738
55	6	0	-0.628871	4.958729	-1.225615
56	7	0	-1.485447	6.066628	-1.243175
57	6	0	-1.929285	6.250764	-2.503982
58	6	0	-1.363747	5.265549	-3.337382
59	6	0	-0.543007	4.449700	-2.564360
60	6	0	0.233141	5.035265	2.510936
61	6	0	-0.312166	6.059257	3.278573
62	6	0	-1 093284	6 880939	2 441505
63	7	Õ	-1 045670	6 396992	1 183432
64	, 5	õ	-1 817543	6 981438	-0 032114
65	9	0	-1 302/81	8 287997	-0.288104
66	0	0	_3 102034	6 967787	0.200104
67	7	0	-5.172034	3 200761	0.220400 2 000072
60	6	0	0.230019	J.277/01 7 250000	-J.0707/2
00	0	0	-2.800300	1.332320	-2.000401
09	0	U	1.100314	3.938390	3.030388
/0	6	0	-1.8/8091	8.09/055	2.813030

71	6	0	5.167530	2.287215	0.008672
72	6	0	3.878238	-4.716860	-0.030680
73	6	0	6.036066	2.397455	-1.082512
74	6	0	7.130997	3.257461	-1.073719
75	6	0	7.375790	4.046645	0.047500
76	6	0	6.527561	3.967185	1.149559
77	6	0	5.444199	3.094025	1.118173
78	6	0	3 894489	-5 581059	1 070726
79	6	0	4.635590	-6.759907	1.079381
80	6	0	5.399619	-7.100025	-0.033769
81	6	0	5 411303	-6 261886	-1 145451
82	6	Õ	4 653902	-5 093427	-1 133749
83	9	Õ	4 627201	-7 561148	2 1 5 2 4 6 7
84	9	Õ	6 118812	-8 226384	-0.035010
85	9	Õ	3 181775	-5 283828	2 167769
86	9	0	4 683874	-4 319118	-2 228696
87	9	0	6 140561	-6 589384	-2.220050
88	9	0	5 819029	1 666317	-2.217051
80	9	0	1 655989	3 031117	2 206875
00	0	0	4.055969	<i>J</i> .0 <i>J</i> 1117 <i>A</i> 710048	2.200873
90 01	9	0	0.703702 8.421041	4.719046	2.230007
02	9	0	0.421041 7.040204	4.0////3	0.000090
92	9	0	7.940294	2.220012	-2.130330
93	1	0	-2.0/00/9	2.369912	0.040773
94	1	0	-1.202/2/	-3.133481	-0.083008
95	1	0	1.293340	-5.810984	-0.105828
96	1	0	5.963405	-2.842955	0.054122
9/	1	0	6.444009	-0.224/2/	0.064058
98	1	0	2.896347	4.231/46	-0.062295
99	1	0	-5.569465	-0.5/3835	4.496643
100	1	0	-5./96496	0.326627	-4.353469
101	1	0	-3.089279	0.046283	4.24/841
102	1	0	-2.641261	0.94163/	2.783944
103	1	0	-2.36255/	-0./94503	2.8/1/43
104	1	0	-8./51080	-0.20/090	2.690/61
105	1	0	-8.138595	-1.18/486	4.046098
106	1	0	-8.42/642	-1.919005	2.448281
10/	1	0	-2.466363	-0.13//61	-2./83388
108	1	0	-3.263654	0.64/420	-4.15/090
109	l	0	-2.854932	1.578081	-2.707262
110	1	0	-8.526152	-1.426148	-2.543724
111	l	0	-8.360710	-0.276978	-3.893167
112	l	0	-8.894884	0.274117	-2.2836/7
113	l	0	-1.538760	5.174768	-4.401935
114	l	0	-0.174006	6.206112	4.342260
115	l	0	-0.109152	2.334653	-2.733722
116	l	0	0.202603	3.287575	-4.192151
117	1	0	1.312756	3.365761	-2.810708
118	l	0	-3.795325	7.283810	-2.304308
119	1	0	-2.425681	8.329090	-2.653626
120	1	0	-3.102387	7.305345	-3.946491
121	1	0	1.129753	4.004988	4.148887
122	1	0	2.130282	3.993357	2.687774
123	1	0	0.722260	2.946582	2.787185
124	1	0	-1.776964	8.305217	3.881117
125	1	0	-2.937753	7.960597	2.572471

126	1	0	-1.535301	8.968513	2.244707
127	31	0	1.313369	-0.698142	-0.002264
128	6	0	2.195126	0.078164	3.030246
129	6	0	0.585501	-1.572302	3.045479
130	6	0	2.280219	0.071663	4.420505
131	1	0	2.811791	0.749575	2.443081
132	6	0	0.604680	-1.642926	4.436620
133	1	0	-0.072117	-2.212503	2.467820
134	1	0	2.971190	0.742468	4.920347
135	1	0	-0.045809	-2.344117	4.948735
136	6	0	0.348913	-1.342689	-3.046712
137	6	0	2.292499	-0.101471	-3.050554
138	6	0	0.323626	-1.394080	-4.438466
139	1	0	-0.424403	-1.827843	-2.461028
140	6	0	2.344627	-0.102614	-4.442666
141	1	0	3.061055	0.395039	-2.468279
142	1	0	-0.478208	-1.922314	-4.943679
143	1	0	3.159880	0.400784	-4.951773
144	6	0	1.341032	-0.761444	-5.152175
145	6	0	1.469412	-0.805566	5.140065
146	7	0	1.312961	-0.707679	-2.356502
147	7	0	1.363915	-0.728055	2.345280
148	1	0	1.511384	-0.836510	6.224896
149	1	0	1.353083	-0.783694	-6.238000

 Table S5: List of Cartesian Coordinates for compound 4 in DMSO:

Center Atomic Atomic Coordinates (Angstroms)					stroms)
Number	Number	• Туре	e X	Y	Z
1	6	0	-0.770863	1.206704	0.010843
2	6	0	-2.178119	1.404902	0.022563
3	6	0	-2.776483	0.143887	0.027143
4	6	0	-1.707414	-0.836986	0.014709
5	7	0	-0.538745	-0.138491	0.005474
6	6	0	-1.670558	-2.264148	-0.000934
7	6	0	-0.481269	-3.033041	-0.016364
8	6	0	-0.378929	-4.472392	-0.054710
9	6	0	0.951007	-4.804855	-0.064858
10	6	0	1.710749	-3.579212	-0.030391
11	7	0	0.816379	-2.535588	-0.004372
12	6	0	3.122319	-3.426358	-0.027391
13	6	0	3.829548	-2.194801	-0.020219
14	6	0	5.258102	-1.993829	0.025536
15	6	0	5.488990	-0.642915	0.029303
16	6	0	4.212837	0.028851	-0.014802
17	7	0	3.234359	-0.956939	-0.041893
18	6	0	3.976087	1.424330	-0.019425
19	6	0	2.679249	2.016017	-0.024683
20	6	0	2.230056	3.376995	-0.044128
21	6	0	0.833675	3.364876	-0.029503
22	6	0	0.436414	1.990001	-0.003779
23	7	0	1.567820	1.231070	0.000841
24	6	0	-4.242472	-0.096274	0.039271

25	6	0	-4.963557	-0.063163	-1.169479
26	6	0	-4.901522	-0.328874	1.261705
27	6	0	-0.067068	4.541995	-0.030180
28	7	0	-6.276240	-0.604360	1.286322
29	6	0	-6.663918	-0.758960	2.571706
30	6	0	-5.549691	-0.570908	3.410996
31	6	0	-4.436571	-0.303182	2.618113
32	6	Ő	-4 561354	0 206094	-2 520394
33	6	Õ	-5.714801	0.102709	-3.292781
34	6	0	-6.791422	-0.231300	-2.449945
35	7	Ő	-6 342643	-0 321859	-1 178702
36	5	Ő	-7 173264	-0 796864	0.039277
37	9	Ő	-8 341221	-0.035773	0 158849
38	9	Ő	-7 513457	-2 154196	-0 109764
39	6	Ő	-3.060365	-0.037775	3 151975
40	6	0	-8 068874	-1 079994	2 967717
40	6	0	-3 207461	0 543448	-3.069062
41 42	6	0	-9.207401	-0.476465	-2 833349
42 //3	6	0	-3./01200	-3 551089	1 175577
43 44	6	0	4 70/11/2	-3.331089	1.175577
44	6	0	5 /172/2	-4.232304	0.012847
45	6	0	-3.417243	-4.397800	1 170380
40	6	0	-4.907013	-3.893334	-1.173576
47 70	6	0	-5.0000/9	-3.222030	-1.1/33/0
40	0	0	-2.936036	-3.019384	-0.000737
49 50	9	0	-5.221125	-2.730029	-2.342343
50	9	0	-5.595915	-4.051/55	-2.318004
51	9	0	-0.3838/0	-5.042690	0.021582
52	9	0	-5.193524	-4./19/25	2.3448/9
33 54	9	0	-2.834923	-3.392137	2.338348
54	6	0	-0.2/8106	5.255313	1.163999
55 56	0	0	-0./03315	4.931/11	-1.223988
56		0	-1.58/985	6.019326	-1.235558
57	6	0	-2.052/16	6.184611	-2.494033
58 50	6	0	-1.4/1954	5.211206	-3.328560
59	6	0	-0.620650	4.419//1	-2.561260
60	6	0	0.20/9/1	5.052916	2.498820
61	6	0	-0.344//1	6.0/4300	3.266842
62	6	0	-1.152573	6.8/4248	2.436456
63	7	0	-1.114781	6.381010	1.179013
64	5	0	-1.922864	6.927125	-0.025471
65	9	0	-1.550085	8.251033	-0.298179
66	9	0	-3.296324	6.878923	0.252796
67	6	0	0.204550	3.289941	-3.102348
68	6	0	-3.026055	7.255181	-2.868912
69	6	0	1.101221	3.976792	3.042545
70	6	0	-1.953546	8.077726	2.815735
71	6	0	5.146342	2.343449	0.000806
72	6	0	3.938707	-4.675613	-0.030108
73	6	0	6.016378	2.458398	-1.088238
74	6	0	7.101531	3.329711	-1.079742
75	6	0	7.335702	4.124335	0.038989
76	6	0	6.485977	4.040141	1.138618
77	6	0	5.411947	3.156387	1.108123
78	6	0	3.971587	-5.536368	1.072862
79	6	0	4.726175	-6.705839	1.080714

80	6	0	5.487421	-7.040081	-0.035360
81	6	0	5.483114	-6.205236	-1.148802
82	6	0	4.712662	-5.046242	-1.135653
83	9	Õ	4.732913	-7.504747	2.156589
84	9	0	6.219943	-8.158777	-0.037738
85	9	Õ	3.260691	-5.244403	2.173949
86	9	Õ	4 727140	-4 273954	-2 233954
87	9	Õ	6 210496	-6 527209	-2 227205
88	9	Ő	5 810395	1 720387	-2 191422
89	9	Õ	4 621559	3 089894	2 195032
90	9	Ő	6 714053	4 799129	2 218164
91	9	0	8 372986	4 967109	0.057106
92	9	Ő	7 913287	3 416835	-2 141439
93	1	0	-2 699088	2 353180	0.031121
9/	1	0	-1.216178	-5 156507	-0.079506
05	1	0	1 367582	5 801847	0 103871
95	1	0	6.002587	2 776020	-0.103871
90 07	1	0	6 452066	-2.770929	0.003030
97	1	0	0.432000	4 260416	0.071304
90	1	0	2.834313	4.200410	-0.0/2128
99 100	1 1	0	-5.568429	-0.622975	4.492102
100	1	0	-5./83932	0.248970	-4.363148
101	1	0	-3.092565	0.012992	4.244/43
102	1	0	-2.644598	0.902068	2.//6112
103	1	0	-2.360068	-0.832324	2.8/5031
104	1	0	-8./49814	-0.26/065	2.694304
105	l	0	-8.129355	-1.243891	4.046261
106	l	0	-8.422602	-1.9/9906	2.452686
107	1	0	-2.458050	-0.200781	-2.785535
108	l	0	-3.253610	0.581206	-4.161945
109	l	0	-2.84/508	1.514489	-2.712431
110	l	0	-8.524546	-1.488216	-2.54/103
111	l	0	-8.340565	-0.363062	-3.912695
112	l	0	-8.886301	0.219666	-2.320566
113	l	0	-1.656819	5.110963	-4.390483
114	1	0	-0.193479	6.232176	4.327048
115	1	0	-0.144819	2.316439	-2.741274
116	1	0	0.146988	3.281800	-4.195151
117	1	0	1.256689	3.376069	-2.813639
118	1	0	-3.957031	7.151220	-2.300638
119	1	0	-2.621960	8.246756	-2.638593
120	1	0	-3.255384	7.203689	-3.935856
121	1	0	1.137275	4.048422	4.134204
122	1	0	2.126665	4.051582	2.665582
123	1	0	0.742030	2.976430	2.779105
124	1	0	-1.837130	8.291455	3.880793
125	1	0	-3.015520	7.921344	2.597683
126	1	0	-1.636737	8.954794	2.240770
127	31	0	1.326907	-0.687471	-0.005328
128	6	0	2.206582	0.106403	3.023177
129	6	0	0.605937	-1.553188	3.044683
130	6	0	2.288401	0.108670	4.413660
131	1	0	2.821285	0.778312	2.434728
132	6	0	0.622026	-1.615305	4.436134
133	1	0	-0.047070	-2.200863	2.470193
134	1	0	2.974025	0.786254	4.911245

135	1	0	-0.026029	-2.316219	4.951361
136	6	0	0.375246	-1.356072	-3.046830
137	6	0	2.273382	-0.045690	-3.050018
138	6	0	0.343409	-1.395412	-4.438785
139	1	0	-0.377941	-1.872738	-2.461870
140	6	0	2.317007	-0.031845	-4.442283
141	1	0	3.026674	0.474257	-2.468368
142	1	0	-0.442166	-1.946400	-4.944798
143	1	0	3.109258	0.506597	-4.951429
144	6	0	1.333073	-0.719584	-5.152519
145	6	0	1.480474	-0.768588	5.136857
146	7	0	1.320378	-0.693439	-2.355083
147	7	0	1.381322	-0.708649	2.339973
148	1	0	1.519554	-0.792283	6.221663
149	1	0	1.338450	-0.730112	-6.238256

Fig. S23: Cyclic voltammograms of **4** in various solvents. Scan rate at 0.1V/s. Contain TBAPF (0.1 M) as supporting electrolyte.

Fig. S24: Cyclic voltammograms of compound **4** in various solvents. Scan rate at 0.1V/s. Contain TBAPF (0.1 M) as supporting electrolyte.

References:

- 1. Sheldrick, G. M. (1999). SADABS and TWINABS, Universität Göttingen, Germany.
- 2. G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- 3. A.L. Spek, Acta Cryst. 2009, D65, 148-155.
- 4. L. J Farrugia, J Appl. Cryst. 2012, 45, 849-854.
- 5. Dean, J. A. Langre's Handbook of Chemistry; McGraw-Hill, Inc.: New York, 1992.
- 6. J. Bendix, I. J. Dmochowski, H. B. Gray, A. Mahammed, L. Simkhovich and Z. Gross, *Angew. Chem. Int. Ed.*, 2000, **39**, 4048-4051.
- Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.