Electronic Supplementary Information

Ring-opening polymerization of *rac*-lactide mediated by tetrametallic

lithium and sodium diamino-bis(phenolate) complexes

Dalal Alhashmialameer,^a Nduka Ikpo,^a Julie Collins,^b Louise N. Dawe,^{abc} Karen Hattenhauer,^a and Francesca M. Kerton*^a

^a Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X7. E-mail: <u>fkerton@mun.ca</u>

^b C-CART X-ray Diffraction Laboratory, Memorial University of Newfoundland, St. John's, Newfoundland.

^C Current Address: Department of Chemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada.

Table S1. Crystallographic data and structure refinement for 1 and 4.	S3
Table S2. Selected Bond lengths (Å) and angles (°) for 1 and 4.	S4
Figure S1. ¹ H NMR spectrum (300 MHz, 298 K, C_6D_6) of 1.	S5
Figure S2. ¹ H NMR spectrum (500 MHz, 298 K, C_6D_6 and C_5D_5N) of 1.	S6
Figure S3. ¹ H NMR spectrum (500 MHz, 298 K, C_5D_5N) of 1 .	S 7
Figure S4. ⁷ Li NMR spectrum (300 MHz, 298 K, C_6D_6) of 4 .	S 8
Figure S5. ¹ H NMR spectrum (300 MHz, 298 K, C_6D_6) of 4.	S9
Figure S6a. ¹ H NMR spectrum (500 MHz, 233 K, C_5D_5N) of 4.	S10
Figure S6b. ¹ H NMR spectrum (500 MHz, 308 K, C ₅ D ₅ N) of 4 .	S11
Figure S7. Conversion (%) vs. time for the ROP of LA initiated by 3 under the	S12
conditions in Table 1, entry 9.	
Figure S8. Conversion (%) vs. time for the ROP of LA initiated by 3 under the	S12
conditions in Table 2, entries 13, 15 and 17. CH ₂ Cl ₂ , Toluene, THF.	
Figure S9. First-order plot of LA consumption initiated by 3 according to the conditions	S13
in Table 2, entries 13 and 15. CH_2Cl_2 (y = 0.0256x + 0.1897, R^2 = 0.9894), Toluene (y = 0.0884x + 0.3487, R^2 = 0.9593)	
Figure S10. Conversion (%) vs. time for the ROP of LA initiated by 1, 2, 3 and 4 in	S13
CH ₂ Cl ₂ under the conditions in Table 2, entries 2, 8, 13 and 19, 1 , 2 , 3 , 4 .	
Figure S11. First-order plot of LA consumption initiated by 1 , 2 , 3 and 4 in CH ₂ Cl ₂ under	S14
conditions in Table 2, entries 2, and 13. 1 ($y = 0.0114x + 0.0834$, $R^2 = 0.96$), 3 ($y = 0.0257x + 0.2068$, $R^2 = 0.9983$).	
Figure S12. Conversion (%) vs. time for the ROP of LA initiated by 1 in CH ₂ Cl ₂ under the	S14
conditions in Table 2, entries 2, 3 and 5. 1 eq. BnOH , 2 eq. BnOH , 4 eq. BnOH . Figure S13. ¹ H NMR spectrum in CDCl ₃ of PLA obtained under the conditions in Table	S15
2, entry 12, similar spectra also obtained for entries 13, 18 and 19.	

Figure S14. ¹ H NMR spectrum in CDCl ₃ of PLA obtained under the conditions in Table S 2 entry 3 similar spectrum obtained for entry 5	516
Figure S15. ${}^{1}H{}^{1}H{}NMR$ spectrum (500 MHz, CDCl ₃) of the methine region of PLA S produced under the conditions in Table 2, entry 7, similar results were obtained for	517
entrice 8, 12 and 12	
Figure S16. ¹³ C NMR spectrum (500 MHz, CDCl ₃) of the methine region of PLA S produced under the conditions in Table 2, entry 7, similar results were obtained for	517
entries 8, 12 and 13.	
Figure S17. ⁷ Li NMR spectrum (300 MHz, C_6D_6) of 1 with and without 1 equiv. <i>rac</i> -S lactide.	518
Figure S18. Monitoring of stoichiometric (M: BnOH: LA, 1:1 and 1:1:1) model reactions S by 1 H NMR in dichloromethane-d ₂ at 298 K (500 MHz).	519
Figure S19. Monitoring of stoichiometric (M: BnOH: LA, 1:2 and 1:2:1) model reactions S by 1 H NMR in dichloromethane-d ₂ at 298 K (500 MHz).	520
Figure S20. Monitoring of stoichiometric (M: BnOH: LA, 1:4 and 1:4:1) model reactions S by ¹ H NMR in dichloromethane-d ₂ at 298 K (500 MHz)	521
Figure S21. 13 C NMR spectrum (300 MHz, 298 K, CDCl ₃) of 1.	522
Figure S22. ¹³ C NMR spectrum (300 MHz, 298 K, C ₆ D ₆) of 1 .	523
Figure S23. ¹³ C NMR spectrum (300 MHz, 298 K, C ₅ D ₅ N) of 1 .	524
Figure S24. MALDI-TOF spectrum of 1. S	\$25
Figure S25. Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern S for 1	325
Figure S26 ¹ H NMR spectrum (300 MHz 298 K C_4D_4) of 2	526
Figure S27 13 C NMR spectrum (300 MHz 298 K C ₅ D ₅ N) of 2	527
Figure S28 13 C NMR spectrum (300 MHz 298 K CDCl ₂) of 2	528
Figure S29 MALDI-TOF spectrum of 2	529
Figure S30 Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern	329
for 2 .	527
Figure S31. ¹ H NMR spectrum (300 MHz, 298 K, C_6D_6) of 3 .	530
Figure S32. 13 C NMR spectrum (300 MHz, 298 K, C ₆ D ₆) of 3 .	531
Figure S33. MALDI-TOF spectrum of 3 .	532
Figure S34. Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern	532
for 3 .	·
Figure S35. ¹³ C NMR spectrum (300 MHz, 298 K, CDCl ₃) of 4 .	533
Figure S36. MALDI-TOF spectrum of 4. S	534

Compound	1 (CCDC 1410026)	4 (CCDC 1410027)			
Empirical Formula	$C_{82}H_{132}Li_4N_4O_7.3(C_7H_8)$	$C_{66}H_{100}Na_4N_4O_6$			
Formula Weight	1590.15	1137.51			
Temperature/K	163	163			
Crystal Color	Colorless	Colorless			
Crystal System	Triclinic	Monoclinic			
Crystal Dimensions	0.38 X 0.35 X 0.34 mm	$0.5\times0.43\times0.35~mm$			
Lattice Parameters	a = 16.592(2) Å	a = 12.898(4) Å			
	b = 18.655(2) Å	b = 13.741(4) Å			
	c = 19.067(2) Å	c = 18.695(6) Å			
	$\alpha = 103.219(7)^{\circ}$	$\alpha = 90^{\circ}$			
	$\beta = 98.581(7)^{\circ}$	$\beta = 101.518(4)^{\circ}$			
	$V = 5265.8(10) \text{ Å}^3$	V = 3246.7(17) Å			
Space Group	P-1 (#2)	$P2_1/n$			
Z value	2	2			
D _{calc}	1.003 g/cm^3	1.164 g/cm^3			
F000	1740	1232.0			
μ(ΜοΚα)	0.61 cm^{-1}	0.096 cm^{-1}			
Reflections collected	43063	24304			
Independent reflections	21429	7155			
R _{int}	0.0454	0.0374			
R, wR ₂ (all) ^a	0.1462, 0.3597	0.0604, 0.1653			
R, wR ₂ $[I \ge 2\sigma (I)]^a$	0.1130, 0.3441	0.0543, 0.1580			
GOF-fit on F ²	1.060	1.084			
${}^{a}R_{1} = \Sigma(F_{o}) - F_{c})/\Sigma F_{o} $; wR ₂ = $[\Sigma(w(F_{o}^{2} - F_{c}^{2})^{2})/\Sigma w(F_{o}^{2})^{2}]^{1/2}$					

Table S1. Crystallographic data and structure refinement for **1** and **4**.

1		4	
Li(1)-O(1)	1.804(8)	Na(1)-O(1)	2.3450(14)
Li(2)-O(1)	1.932(7)	Na(1)-O(2)	2.3176(14)
Li(1)-O(3)	1.849(8)	Na(1)-O(4)	2.3956(13)
Li(2)-O(3)	1.924(7)	Na(1)-N(2)	2.6392(16)
Li(1)-O(5)	1.932(8)	Na(2)-O(4)	2.1825(14)
Li(2)-N(1)	2.268(8)	Na(2)-O(2)	2.2369(17)
Li(2)-N(3)	2.295(7)	Na(1)-N(1)	2.6761(16)
O(1)-Li(1)-O(3)	100.0(4)	O(1)-Na(1)-O(4)	89.16(4)
O1-Li(1)-O(3)	130.5(4)	O(1)-Na(1)-N(2)	134.44(5)
O(1)-Li(2)-O(3)	93.0(3)	O(4)-Na(1)-N(2)	123.34(5)
Li(1)-O(1)-Li(2)	50.3(2)	O(1)-Na(1)-N(1)	77.30(4)
Li(1)-O(3)-Li(2)	50.0(2)	O(2)-Na(1)-O(4)	92.48(5)
O(1)-Li(2)-N(1)	95.5(3)	O(2)-Na(1)-N(2)	77.34(5)
O(1)-Li(2)-N(3)	123.4(3)	O(2)-Na(1)-N(1)	139.96(5)
O(3)-Li(2)-N(1)	118.7(3)	N(1)-Na(1)-N(2)	62.65(5)
O(3)-Li(2)-N(3)	94.3(3)	O(2)-Na(1)-O(4)	35.63(4)
N(1)-Li(2)-N(3)	128.0(3)		

Table S2. Selected Bond lengths (Å) and angles (°) for 1 and 4.

Figure S1. 1 H NMR spectrum (300 MHz, 298 K, C₆D₆) of **1**.

Figure S2. $^1\!H$ NMR spectrum (500 MHz, 298 K, C_6D_6 and C_5D_5N) of 1.

Figure S3. 1 H NMR spectrum (500 MHz, 298 K, C₅D₅N) of **1**.

Figure S4. ⁷Li NMR spectrum (300 MHz, 298 K, C_6D_6) of 1.

Figure S5. ¹H NMR spectrum (300 MHz, 298 K, C_6D_6) of 4.

Figure S6a. 1 H NMR spectrum (500 MHz, 233 K, C₅D₅N) of **4**.

Figure S6b. ¹H NMR spectrum (500 MHz, 308 K, C_5D_5N) of 4.

Figure S7. Conversion (%) vs. time for the ROP of LA initiated by **3** under the conditions in Table 1, entry 9.

Figure S8. Conversion (%) vs. time for the ROP of LA initiated by **3** under the conditions in Table 2, entries 13, 15 and 17. CH_2Cl_2 , Toluene, THF.

Figure S9. First-order plot of LA consumption initiated by **3** according to the conditions in Table 2, entries 13 and 15. CH_2Cl_2 (y = 0.0256x + 0.1897, $R^2 = 0.9894$), Toluene (y = 0.0884x + 0.3487, $R^2 = 0.9593$).

Figure S10. Conversion (%) vs. time for the ROP of LA initiated by 1, 2, 3 and 4 in CH_2Cl_2 under the conditions in Table 2, entries 2, 8, 13 and 19. 1, 2, 3, 4.

Figure S11. First-order plot of LA consumption initiated by 1, 2, 3 and 4 in CH_2Cl_2 under the conditions in Table 2, entries 2, and 13. 1 (y = 0.0114x + 0.0834, $R^2 = 0.96$), 3 (y = 0.0257x + 0.2068, $R^2 = 0.9983$).

Figure S12. Conversion (%) vs. time for the ROP of LA initiated by 1 in CH_2Cl_2 under the conditions in Table 2, entries 2, 3 and 5. 1 eq. BnOH, 2 eq. BnOH, 4 eq. BnOH.

Figure S13. ¹H NMR spectrum in CDCl₃ of PLA obtained under the conditions in Table 2, entry 12, similar spectra also obtained for entries 13, 18 and 19.

Figure S14. ¹H NMR spectrum in CDCl₃ of PLA obtained under the conditions in Table 2, entry 3, similar spectrum obtained for entry 5.

Figure S15. ¹H{¹H}NMR spectrum (500 MHz, CDCl₃) of the methine region of PLA produced under the conditions in Table 2, entry 7, similar results were obtained for entries 8, 12 and 13.

Figure S16. ¹³C NMR spectrum (500 MHz, CDCl₃) of the methine region of PLA produced under the conditions in Table 2, entry 7, similar results were obtained for entries 8, 12 and 13.

Figure S17. ⁷Li NMR spectrum (300 MHz, C₆D₆) of **1** with and without 1 equiv. *rac*-lactide.

Figure S18. Monitoring of stoichiometric (M: BnOH: LA, 1:1 and 1:1:1) model reactions by ¹H NMR in dichloromethane-d₂ at 298 K (500 MHz).

Figure S19. Monitoring of stoichiometric (M: BnOH: LA, 1:2 and 1:2:1) model reactions by ¹H NMR in dichloromethane-d₂ at 298 K (500 MHz).

Figure S20. Monitoring of stoichiometric (M: BnOH: LA, 1:4 and 1:4:1) model reactions by ¹H NMR in dichloromethane-d₂ at 298 K (500 MHz).

Figure S21. 13 C NMR spectrum (300 MHz, 298 K, CDCl₃) of **1**.

Figure S23. 13 C NMR spectrum (300 MHz, 298 K, C₅D₅N) of **1**.

Figure S25. Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern

for **1**.

Figure S26. ¹H NMR spectrum (300 MHz, 298 K, C_6D_6) of **2**.

Figure S30. Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern

Figure S32. ¹³C NMR spectrum (300 MHz, 298 K, C_6D_6) of **3**.

Figure S34. Theoretical and Experimental MALDI-TOF MS isotopic distribution pattern

for **3**.

Figure S35. ¹³C NMR spectrum (300 MHz, 298 K, CDCl₃) of 4.

Figure S36. MALDI-TOF spectrum of 4.