Electronic Supplementary Information

For

Oxidative photoreactivity of mono-transition-metal functionalized lacunary Keggin anions

Medha Dave and Carsten Streb*

Institute of Inorganic Chemistry I, Ulm University, Ulm, Germany

1. Instrumentation

UV-Vis spectroscopy: UV-Vis spectroscopy was performed on a Shimadzu UV-2450 spectrophotometer, Varian Cary 50 spectrophotometer or Varian Cary 5G spectrophotometer. All systems were used with standard cuvettes (d = 10.0 mm).

FT-IR spectroscopy: FT-IR spectroscopy was performed on a Shimadzu IRPrestige-21 FTIR spectrophotometer including a Golden Gate ATR unit. Signals are given as wavenumbers in cm⁻¹ using the following abbreviations: vs = very strong, s = strong, m = medium, w = weak and b = broad.

Cyclic Voltammetry (CV): CV was performed using an Ivium CompactStat potentiometer using glassy carbon working electrode and platinum wire as counter electrode and pseudo-reference electrode. Ferrocene was used as internal reference. Dry solvent were used with nBu₄NPF₆ as the electrolyte.

Elemental analysis: Elemental analysis was performed on a Euro Vector Euro EA 3000 Elemental Analyzer.

General remarks: All chemicals were purchased from Sigma Aldrich, ABCR or ACROS and were of reagent grade. The chemicals were used without further purification unless stated otherwise. Monolacunary tungstate - based Keggin clusters (α -[M(H₂O)SiW₁₁O₃₉]ⁿ⁻ (M = Co²⁺, Cu²⁺, Ni²⁺, Mn²⁺) were prepared according to a modified literature procedure based on C. M. Tourné, G. F. Tourné, S. A. Malik and T. J. R. Weakley, *J. Inorg. Nucl. Chem.*, 1970, **32**, 3875–3890.

2. Synthetic section

Synthesis of $(nBu_4N)_6[\alpha-M(H_2O)SiW_{11}O_{39}]$: 1.0 g (0.31 mmol) $K_8[\alpha-SiW_{11}O_{39}] \cdot 13H_2O$ (1.00 eq.) was dissolved in water and 1.05 molar equivalents the respective transition metal nitrate salt was

added. The mixture was stirred and heated to 55 °C for 1.5 hours. After cooling to roomtemperature, 1.09 g (3.38 mmol) of nBu_4NBr (1.09 eq.) were added to the reaction mixture. The pH was set to pH = 3 using aqueous HNO₃ (2M). After 20 min. the precipitate was filtered off, washed with water and dried in a desiccator. Compound purity was verified using UV-Visspectroscopy, FT-IR-spectroscopy, CHN elemental analysis and ICP-OES.

Photocatalytic measurements: The standard basic blue 41 photooxidation was carried out as follows: a N,N-dimethyl formamide (DMF) solution of the respective cluster (4.0 μ M) and basic blue 41 (20.0 μ M) was prepared. The homogeneous solution was irradiated with a custom-built LED irradiation setup (standard light source: $\lambda = 390$ nm, $P_{nominal} = 3$ W). BB41 photooxidation was detected spectrometrically by following the decrease of the characteristic absorption signal at $\lambda_{max} = 625$ nm. De-aerated experiments were performed by flushing the sample with Ar for 10 min prior to the experiment in a glove box. Hydroxyl radical scavenging experiments were performed by adding ethanol (200 μ M) to the solution.

Cyclic Voltammetry: $E_{1/2}$ from cyclic voltammetry of {MW₁₁} in DMF vs. Fc/Fc⁺, containing 0.1 M (nBu₄N)PF₆. Scan rate = 1000 mV/S. Unless stated otherwise, redox-processes were quasi-reversible.

{MW ₁₁ }	E ^I _{1/2} / V	E ^{II} _{1/2} / V	E ^{III} 1/2 / V	E ^{IV} _{1/2} / V
{CoW ₁₁ }	+0.11	-0.55	-1.43	
{CuW ₁₁ }	-0.74	-1.42	-1.69	
{MnW ₁₁ }	-1.39	-2.04		
{NiW ₁₁ }	-1.45	-2.46		