## Influence of Y<sup>3+</sup>, Gd<sup>3+</sup>, and Lu<sup>3+</sup> co-doping on the phase and luminescence properties of monoclinic Eu:LaVO4 particles

Rik Van Deun,<sup>a,\*</sup> Micheline D'hooge,<sup>a</sup> Aleksandar Savic,<sup>a,b,c</sup> Isabel Van Driessche,<sup>d</sup> Kristof Van Hecke,<sup>b</sup> Anna M. Kaczmarek<sup>a,\*</sup>

- <sup>a</sup> L<sup>3</sup>, Luminescent Lanthanide Lab, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium; corresponding email: anna.kaczmarek@ugent.be, rik.vandeun@ugent.be
- <sup>b</sup> XStruct, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium.
- <sup>c</sup> Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
- <sup>d</sup> SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium.



Fig. S1 XRD pattern of sample prepared for 15 minutes using 30 mL glycerol



Fig. S2 DRIFTS spectrum of glycerol



**Fig. S3** XRD patterns of Eu 12.5% doped LaVO<sub>4</sub> with different percentages of Gd<sup>3+</sup> co-doping (2, 5 and 10%). Peaks marked with a star are characteristic peaks of the tetragonal LaVO<sub>4</sub> phase. All other peaks can be assigned to the monoclinic LaVO<sub>4</sub> phase.



**Fig. S4** XRD pattern of Eu 12.5% doped LaVO<sub>4</sub> with 10% Y<sup>3+</sup> co-doping. Peaks marked with a star are characteristic peaks of the tetragonal LaVO<sub>4</sub> phase. All other peaks can be assigned to the monoclinic LaVO<sub>4</sub> phase.



**Fig. S5** XRD pattern of Eu 12.5% doped LaVO<sub>4</sub> with 10% Lu<sup>3+</sup> co-doping. Peaks marked with a star are characteristic peaks of the tetragonal LaVO<sub>4</sub> phase. All other peaks can be assigned to the monoclinic LaVO<sub>4</sub> phase.



Fig. S6 Luminescence decay curves of 2.5%, 5%, 10% and 15%  $\rm Eu^{3+}$  doped LaVO4 samples.



**Fig. S7** Excitation spectrum (uncorrected) of Eu<sup>3+</sup> 12.5% doped LaVO<sub>4</sub> with 10% Gd<sup>3+</sup> co-doping. Peaks a-d are assigned in Table S1.



Fig. S8 Excitation spectrum (uncorrected) of  $Eu^{3+}$  12.5% doped LaVO<sub>4</sub> with 10%  $Y^{3+}$  co-doping. Peaks a-d are assigned in Table S1.



Fig. S9 Excitation spectrum (uncorrected) of Eu $^{3+}$  12.5% doped LaVO<sub>4</sub> with 10% Lu $^{3+}$  co-doping. Peaks a-d are assigned in Table S1.

| Peak | Wavelength (nm) | Transition                           |  |
|------|-----------------|--------------------------------------|--|
| а    | 316             | V-O CTB                              |  |
| b    | 361             | ${}^{5}D_{4} \leftarrow {}^{7}F_{0}$ |  |
| С    | 394             | ${}^{5}L_{6} \leftarrow {}^{7}F_{0}$ |  |
| d    | 464             | ${}^{5}D_{2} \leftarrow {}^{7}F_{0}$ |  |
|      |                 |                                      |  |

Table S1 Assignment of peaks presented in Fig. S8-S10



Fig. S10 Decay curves of 12.5% Eu:LaVO4 nanoparticles doped with 2, 5 and 10%  $$\rm Gd^{3+}\ ions.$ 



Fig. S11 Decay curves of 12.5%Eu:LaVO4 nanoparticles doped with 2, 5 and 10%  $$Y^{3+}$ ions.$ 



Fig. S12 Decay curves of 12.5%Eu:LaVO4 nanoparticles doped with 2, 5 and 10%  $$\rm Lu^{3+}\ ions.$ 



Fig. S13 High-resolution emission spectra of the 12.5%Eu:LaVO<sub>4</sub> materials with different Y<sup>3+</sup> co-doping percentages.



Fig. S14 High-resolution emission spectra of the 12.5%Eu:LaVO<sub>4</sub> materials with different Lu<sup>3+</sup> co-doping percentages.



Fig. S15 Emission spectrum of 12.5%Eu:LaVO<sub>4</sub> nanoparticles suspended in water.



Fig. S16 Emission spectrum of 12.5% Eu\_10% Gd:LaVO4 nanoparticles suspended in water.



Fig. S17 Decay graphs of samples measured as colloidal suspensions.