Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Journal of Dalton Transactions.

This journal is © The Royal Society of Chemistry 2015

Supporting Information

A Peptide-based Fluorescent Chemosensor for Measuring Cadmium Ions in Aqueous Solutions and Live Cells

Peng Wang ^a, Jiang Wu ^{*,a}, Lixuan Liu ^a, Panpan Zhou ^a, Yushu Ge ^b, Dan Liu ^b Weisheng Liu ^a and Yu Tang ^{*,a}

a. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic

Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.

b. Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, University of Sciences and Technology of China,

Hefei, 230027, P. R. China.

*Corresponding Author. Tel: 86-931-8912552 Fax: 86-931-8912582. E-mail address: tangyu@lzu.edu.cn

*Corresponding Author. E-mail address: wujiang@lzu.edu.cn

This journal is © The Royal Society of Chemistry 2015

HPLC Chromatogram of H₂L

Sample: H₂L

Column: 4.6*150 mm, kromasil C18-5

Solvent A: 0.1% Trifluoroacetic acid in 100% Acetonitrile

Solvent B: 0.1% Trifluoroacetic acid in 100% Water

Gradient:	Time	Α	В
	0.01 min	5%	95%
	25.0 min	70%	30%
Flow rate: 1	l.0 ml/min		

Wavelength: 214 nm

Volume: $10 \,\mu L$

Figure S1. HPLC Chromatogram of H₂L.

Rank	Time	Name Conc.	Area
1	10.331	2.611	370547
2	10.493	0.687	97491
3	10.632	96.59	13707005
4	11.061	0.1133	16082
Total		100	14191125

Table S1. HPLC Chromatogram data of H_2L

This journal is © The Royal Society of Chemistry 2015

MS Analysis data

Sample: H₂L

Expected MS: 817.2514

Buffer: 10% CH₃CN in double distilled water

Figure S2. MS (ESI) spectrum of H₂L.

This journal is © The Royal Society of Chemistry 2015

Counter anions test of Cd²⁺

Figure S3. Counter anions test of Cd^{2+} with $Cd(ClO_4)_2$, $CdCl_2$, $Cd(NO_3)_2$, and $CdSO_4$ in 10mM HEPES buffer solution at pH 7.4. Excitation wavelength: 330 nm.

The pH test for H_2L with Cd^{2+}

Figure S4. The pH influence on the fluorescence intensity of H_2L in the absence and presence of Cd^{2+} ion. Excitation wavelength: 330 nm.

This journal is © The Royal Society of Chemistry 2015

The binding constant of L-Cd

The association constant for 2:1 complex was calculated based on the titration curve of the probes with metal ions. Association constants were determined by a nonlinear least squares fitting of the data with the following equation as referenced elsewhere.

$$y = \frac{x}{2 \times a \times b \times (1 - x)^2} + \frac{x \times b}{2}$$

Where x is $I-I_0/I_{max}-I_0$, y is the concentration of metal ions, a is the association constant, and b is the concentration of chemosensor.^{S1}

Figure S5. Fitting of fluorescence titration curve of H_2L with Cd^{2+} in 10 mM HEPES buffer at pH 7.4. The binding constant of L-Cd is 3.26×10^{10} M⁻².

This journal is © The Royal Society of Chemistry 2015

The detection limit for Cd²⁺

The detection limit was calculated based on the fluorescence titration. The emission intensity of H_2L without Cd^{2+} was measured 10 times and the standard deviation of blank measurements was determined. A good linear relationship between the fluorescence intensity at 545 nm and the Cd^{2+} concentration could be obtained in the 0-1.25 μ M concentration range (R = 0.9987). The detection limit was then calculated with the equation: detection limit = $3\sigma/k$, where σ is the standard deviation of blank measurements, k is the slope between intensity versus sample concentration.^{S2} The detection limits of Cd^{2+} was measured to be 52 nM.

Figure S6. Fluorescence intensity at 545 nm for H_2L (20 µM) in aqueous solution (10 mM HEPES buffer, pH 7.4) as a function of the concentration of Cd^{2+} ($\lambda_{ex} = 330$ nm). The lowest detection limits of Cd^{2+} is 52 nM.

This journal is © The Royal Society of Chemistry 2015

Fluorescence decay profile of H₂L, L-Cd

Figure S7. Fluorescence decay curve of **H**₂**L** (a), **L-Cd** (b). The lifetime of **H**₂**L** is 9.76 ns and contains two lifetime components: 3.36 ns (40.19%) and 14.06 ns (59.81%) (330 nm excitation, decay time at 545 nm emission). The average lifetime **L-Cd** is 12.67 ns and contains two lifetime components: 4.41 ns (17.97%) and 14.48 ns (82.03%) (330 nm excitation, decay time at 545 nm emission). The average lifetime was calculated according to $\langle \tau \rangle = \frac{\Sigma A_i \tau_i^2}{\Sigma A_i \tau_i}$.

This journal is © The Royal Society of Chemistry 2015

This journal is © The Royal Society of Chemistry 2015

The mass spectrum analysis of L-Cd

Figure S8. ESI mass spectrum of H₂L (500 µM) in H₂O/CH₃CN (80/20, V/V, pH 7.4) including Cd(ClO₄)₂

(1 equiv).

The ¹H NMR spectra analysis of L-Cd

Figure S9. ¹H NMR spectra of H_2L in the absence (a) and presence (b) of Cd(ClO₄)₂ (10 equiv) in D_2O/CD_3CN (80: 20, v/v, pH 7.4).

This journal is © The Royal Society of Chemistry 2015

The optimized configurations for the ligand H₂L and complex L-Cd

Figure S10. The optimized configurations for the ligand H_2L (a) and complex L-Cd (b).

	Table S2. Com	parison of chemose	ensors for Cd ²⁺ assa	ivs in the literatures
--	---------------	--------------------	----------------------------------	------------------------

Cd ²⁺ Chemosensor	Detection condition	Detection limit	Detection method	Reference
BODIPY derivative	Aqueous solution	77 nM	Turn-on	Inorg. Chem., 2015, 54, 3929-3936
Ratiometric electrochemical	PBS buffer	10 nM	Ratiometric	Anal. Chem., 2014, 86, 10668-10673
Double 1,3,4-oxadiazole derivatives	Aqueous solution	20 nM	Turn-on	Chem. Commun., 2014, 50 , 2498-2501
Two benzoxazole-derived	Aqueous solution	133 nM	Turn-on	Chem. Commun., 2014, 50 , 7514-7516
Norbornene derived 8-hydroxyquinoline	Aqueous solution	1.6 nM	Turn-on	ACS. Appl. Mater. Interfaces., 2013, 5,7379-7383
Phenanthroxazole platform	Buffer solution	1.3 μM	Ratiometric	RSC. Adv., 2013, 3 , 21409-21412
Quinoline-based Two-photon	PBS buffer	2.72 nM	Turn-on	Dalton Trans., 2012, 41, 6189-6194
Click functionalized poly (<i>p</i> -phenylene ethynylene)s	THF/Water	0.3 µM	Ratiometric	Chem. Commun., 2011, 47 , 11014-11016
Tricabolyanine derivative	Tris-HCl buffer	2.3 μM	Turn-on	Org. Lett., 2011, 13, 264-267
Quinoline with DPA	Buffer solution	2.38 µM	Ratiometric	Org. Lett., 2009, 11, 3454-3457
Peptide	HEPES buffer	52 nM	Turn-on	This work

This journal is © The Royal Society of Chemistry 2015

Dalton Transactions, 2015, 00, S1-S10 | S9

This journal is © The Royal Society of Chemistry 2015

Reference

[S1] F. Hou, L. Huang, P. Xi, J. Cheng, X. Zhao, G. Xie, Y. Shi, F. Cheng, X. Yao, D. Bai, Z. Zeng, Inorg. Chem., 2012, 51,

2454-2460.

[S2] L. Wang, W. Qin, X. Tang, W. Dou, W. Liu, Q. Teng, X. Yao, Org. Bio. Chem., 2010, 8, 3751-3757.