ELECTRONIC SUPPLEMENTARY INFORMATION

Tin(II)-functionalization of the archetypal {P₈W₄₈} Polyoxotungstate

Natalya V. Izarova,^{*a*,*} Larissa Klaß,^{*a*, *b*} Pedro de Oliveira,^{*c*} Israël-Martyr Mbomekalle,^{*c*} Volker Peters,^{*b*} Frank Haarmann,^{*b*} Paul Kögerler^{*a*,*b*,*}

- ^{*a*} Jülich-Aachen Research Alliance (JARA-FIT) and Peter Grünberg Institute PGI 6, Forschungszentrum Jülich, D-52425 Jülich, Germany. E-mails: n.izarova@fz-juelich.de; paul.koegerler@ac.rwth-aachen.de.
- ^b Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany.
- ^c Equipe d'Electrochimie et de Photoélectrochimie, Laboratoire de Chimie-Physique,
 Université Paris-Sud, UMR 8000 CNRS, Orsay F-91405, France

Bond type	Bond length, Å	Angle type	Angle, °
Р-О	1.526(10) - 1.575(13)	O–Sn–O	91.5(4)
W=O _{term}	1.716(11) - 1.731(11)	O–Sn–Cl	85.8(3) - 86.2(3)
W−µ2-O (W−O−W)	1.879(10) - 1.992(10)	O–P–O	106.5(7) – 112.0(5)
₩–μ ₂ -O (₩–O–Sn)	1.826(10) - 1.836(11)	W–O _P –P	125.4(4) - 131.6(6)
W-μ ₃ -Ο (P, W, K)	2.189(9) - 2.199(10)	W–O _P –W	94.2(5) - 94.8(5)
W– <i>μ</i> ₃ -O (P, 2W)	2.266(9) - 2.278(9)	W−µ₂-O−Sn	121.0(5) - 122.4(5)
Sn–O	2.143(10) - 2.153(10)		95.9(4) - 121.2(8)
Sn–Cl	2.518(6)	<i>w−µ</i> ₂ -O− <i>w</i>	145.9(6) - 162.9(6)
K–Cl	3.152(5) - 3.302(8)		72.0(4) - 103.6(5)
К-О*	2.815(11) - 2.828(11)	0-w-0	155.8(5) - 176.8(4)

 Table S1. Bond lengths and angles in 1 as determined from the crystal structure of KLi-1.

* Within polyanion 1

Bond valence sum calculations

Bond valence sum calculations^[1,2] for **KLi-1** (Table S2) are consistent with the +VI oxidation state for all W centers and +V for all P centers in **1**. The BVS values for the oxygen atoms suggest that there is no protonation of any oxygen positions in **1**.

W, P, Sn and Cl centers		μ ₂ -Ο (W–Ο–W)		Terminal oxygens	
W1	6.18	O11	-1.99	O1T	-1.86
W2	6.21	O12	-2.04	O2T	-1.83
W3	6.31	O13	-2.10	O3T	-1.88
W4	6.32	O16	-2.08	O4T	-1.78
W5	6.14	O22	-1.91	O5T	-1.85
W6	6.35	O23	-2.05	O6T	-1.73
P1	4.80	O24	-2.10	Oxygens of {PO ₄ } groups	
P2	4.70	O35	-2.13	O1P1	-1.89
Sn1	1.33	O44	-2.03	O2P1	-1.92
Cl1	-1.07	O45	-2.08	O3P1	-1.90
μ ₂ -O (Sn-O-W)		O46	-1.94		O1P2
O3S1	-1.85	O56	-2.06	O2P2	-1.90
0581	-1.89	O66	-2.00	O3P2	-1.90

 Table S2. Bond valence sum values for different atoms in KLi-1

Figure S1. Crystal packing of polyanions **1** and K^+ countercations in **KLi-1**; view along the crystallographical *c* axis. The WO₆ octahedra of polyanions **1** in neighboring layers are shown alternatingly in yellow and orange for clarity. Phosphate groups are shown as pink tetrahedra, Sn, K, Cl and O atoms as blue, cyan blue, lime green and red spheres, respectively. Crystal water molecules are omitted.

Figure S2. Crystal packing of polyanions 1 and K^+ countercations in **KLi-1**; view along the crystallographical *b* axis. Color legend as in Fig. S1.

Figure S3. FT-IR spectrum of KLi-1 (black) in comparison with that of $KLi-P_8W_{48}$ (blue).

Figure S4. Solid-state Raman spectrum of KLi-1 (black) in comparison with that of KLi- P_8W_{48} (blue).

Thermogravimetrical analysis

The TGA curve of **KLi-1** exhibits two successive mass-loss steps (Fig. S5). The first one starts at 25 °C and is complete at 290 °C and corresponds to the loss of 102 crystal water molecules per formula unit (11.60% obs. vs. 11.65% calculated). The second step occurs in the temperature range 290 – 480 °C and most likely is attributed to the release of Cl_2 (2.20% obs. vs. 1.80% calculated). The total weight loss at 800 °C is 13.81%.

Figure S5. TGA (blue) and SDTA (green) curves for KLi-1.

Figure S6. ³¹P MAS NMR spectrum of **KLi-1** under 9.4 T at v = 67 kHz (black) and without sample spinning (grey).

Figure S7. Comparison of room temperature ³¹P NMR spectra of KLi-1 (black) and KLi- P_8W_{48} (blue) redissolved in 2 M Li₂SO₄ buffer (pH 3.0).

Figure S8. Room temperature ³¹P NMR spectrum of **KLi-1** redissolved in 2 M Li₂SO₄ buffer (pH 3.0) after 1 day.

Figure S9. Room temperature ³¹P NMR spectrum of **KLi-1** redissolved in 4 M LiCl after 1 day.

Figure S10. Room temperature UV-Vis spectrum of **KLi-1** solution in 2 M Li₂SO₄ buffer (pH 3.0).

Figure S11. Time-dependent room temperature UV-vis spectra of 1.0×10^{-4} M solution of **KLi-1** in 2 M Li₂SO₄ buffer (pH 3.0).

Figure S12. Time-dependent room temperature UV-vis spectra of 1.0×10^{-4} M solution of KLi-1 in 2 M Li₂SO₄ buffer (pH 3.0).

14

Figure S13. Room temperature UV-Vis spectrum of **KLi-1** solution in 0.5 M Li₂SO₄ buffer (pH 2.0).

Figure S14. Time-dependent room temperature UV-vis spectra of 9.0×10^{-5} M solution of **KLi-1** in 0.5 M Li₂SO₄ buffer (pH 2.0).

Figure S16. CVs of **KLi-1** with the following reverse potentials: $E_r = -0.75$ V (black) and $E_r = -0.58$ V (red). Electrolyte: 0.5 M Li₂SO₄ + H₂SO₄ (pH 2.0). POM concentration: 0.5mM. Scan rate: 10 mV s⁻¹; working electrode: glassy carbon; reference electrode: SCE.

Figure S17. (A) CVs of **KLi-1** as a function of the scan rate, the potential range being restricted to the waves of the W centers. Electrolyte: 0.5 M $\text{Li}_2\text{SO}_4 + \text{H}_2\text{SO}_4$ (pH 2.0). POM concentration: 0.5mM; working electrode: glassy carbon; reference electrode: SCE. (B) Reduction peak currents, I_{pc} , and oxidation peak currents, I_{pa} , for the first wave assigned to the W centers as a function of the scan rate. The values were collected from the CVs in Figure A.

References

1. I. D. Brown, D. Altermatt, Acta Crystallogr., Sect. B 1985, 41, 244-247.

2. K. Knížek, Kalvados – Software for crystal structure and powder diffraction; see http://www.fzu.cz/~knizek/kalvados/index.html.