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Materials and methods

1. Materials: The preparations of the complex [Os(p-cym)(1,2-dicarba-closo-dodecaborane-
1,2-dithiolate)] (1) and of micelles OsMs-S were based on our previous reports.1, 2 The triblock 
copolymer P123 [poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene 
glycol)] was purchased from Sigma-Aldrich and used as received. Anhydrous tetrahydrofuran 
(Aldrich) was used. Deionized water (18.2 mega-ohm purity) was collected from a Purelab® 
UHQ USF Elga system. Lacey carbon grids were purchased from Quantifoil Micro Tools 
Gmbh and Elektron Technology UK Ltd, respectively, and used as received.

2. TEM imaging: TEM observations were performed on a JEOL 2000FX electron microscope 
at an acceleration voltage of 200 kV. High magnification TEM images were obtained on a 
JEOL 2100FX electron microscope at an acceleration voltage of 200 kV. TEM samples were 
prepared on lacey carbon on 400 mesh gold grids. A drop of sample (5 μL) was deposited on 
the grid and left to air-dry.

3. XPS measurements: The x-ray photoelectron spectroscopy (XPS) measurements were 
conducted on the Kratos Axis Ultra DLD system, with the samples illuminated by a 
monochromated beam of Al Ka x-rays (h = 1486.6 eV). Photoelectrons were collected at a 
take-off angle of 90° (perpendicular to the surface), from an area of approx. 300 m × 700 m 
using a hemispherical analyser and a hybrid electrostatic-magnetic lens system. Survey spectra 
across the full energy range were acquired at a resolution of 1.75 eV. From this, energy regions 
to be scanned with a resolution of 0.34 eV were determined. Experiments were carried out in 
ultra-high vacuum conditions and all eight samples were scanned consecutively on the same 
sample holder. The energy range and transmission function of the system were calibrated using 
clean Ag foil. Data were analysed using the CasaXPS package, employing mixed Gaussian-
Lorentzian (Voigt) lineshapes and asymmetry parameters where appropriate.

The spectra reported in the main paper refer to the spin-orbit-split doublet of the Os 4f peak. 
In addition to Os, other detected elements were C, B and O, originating from complex 1 and 
from the block copolymer OsMs micelles. Moreover, three further elements were detected: Si 
(from the carbon tape), Au (from the mesh of the TEM grid), and F (contaminant from etching 
of the TEM grid)

3.1. Reference XPS spectra: In the study of powders, poor conductors or insulators with XPS 
it is often necessary to prevent the surface becoming positively charged during exposure to the 
X-ray beam.3 As electrons are removed from atoms in the surface region, the surface can 
become positively charged and this build-up of charge retards the emitted electrons, effectively 
shifting them to vastly higher binding energies in the acquired spectrum. To compensate for 
this, the surface is exposed to a beam of low energy electrons (typically a few eV), during the 
photoemission experiment. 
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In this study the charge neutraliser of the Kratos Axis Ultra-DLD spectrometer was used, which 
comprises a filament built in to the entrance of the hemispherical analyser. It was necessary to 
employ the neutraliser for the powder Os reference samples used to determine the chemical 
shifts between different Os oxidation states (Fig. 4 in the main paper). The neutraliser 
parameters were optimised in order to achieve the best experimental resolution prior to the 
acquisition of data. In the Kratos Axis Ultra-DLD, the optimal resolution is achieved when the 
sample is slightly over-neutralised (i.e. negatively charged), leading to a downward shift in 
binding energy of approximately 4 eV which must be compensated for during data analysis. 
This involves choosing a component which is common to every insulating sample and whose 
energy is well known. In this investigation, all spectra for the Os reference samples were 
charge-referenced to the C 1s component at 285.0 eV arising from adventitious carbon on the 
surface.4 In order to maintain consistency within the dataset, the spectra acquired from the Os 
nanoparticle samples were referenced to the same value. This was performed even though these 
samples did not exhibit surface charging. However, the energy-referencing of the nanoparticle 
samples led to a binding energy shift of only ~0.3 eV from the raw data. Such an approach 
facilitates the direct comparison of the Os 4f binding energies across all samples and therefore 
allows an accurate identification of the Os oxidation states of the nanoparticles. 

In this comparison we note the binding energy of the Os 4f7/2 peak reported in the literature for 
OsO2 at around 51.7 eV.5-8 Attention should however be drawn to the fact that these studies 
use a range of energies for the Au 4f7/2 peak spanning nearly 1 eV (if they used any charge 
referencing at all), thereby casting some doubts on the exact energy of the Os 4f7/2 peak. On 
the other hand, independently of the absolute values of the Os 4f peaks, our self-consistent 
approach with reference samples of known oxidation state, allows us to determine precisely 
the chemical characteristics of the nanoparticles. Indeed, the Os 4f7/2 binding energies for our 
reference samples are consistently around 2 eV higher than those reported by White et al.,5 
leading to increased confidence in our assignment of the peak at 53.60 eV as being from OsO2, 
a value consistent with the work of Siedle et al.8

Fig. S1. Simplified scheme showing differences between experimental set-up reported here 
(left; utilisation of a largely spread beam to irradiate the entire grid), and set-up (right, unspread 
and focused electron beam) as per previously reported.2



Fig. S2. AFM image of a lacey carbon TEM grid prior to any micellar deposition (tapping 
mode, silicon cantilevers ~60 kHz 3N/m)
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