Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

An investigation on new infrared nonlinear optical material: BaCdSnSe₄, and three new related centrosymmetric compounds: Ba₂SnSe₄, Mg₂GeSe₄, and Ba₂Ge₂S₆

Kui Wu,^a Xin Su,^{a,b} Zhihua Yang,^a Shilie Pan^{a,*}

^aKey Laboratory of Functional Materials and Devices for Special Environments of

CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices;

Xinjiang Technical Institute of Physics & Chemistry of CAS, 40-1 South Beijing Road,

Urumqi 830011, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

(c) Figure S1. Powder XRD patterns of BaCdSnSe₄ (a), Ba_2SnSe_4 (b), and Mg_2GeSe_4 (c).

Atom	Х	У	Z	U _{eq}	BVS
Ba(1)	2500	2500	6255(3)	17(1)	2.245
Ba(2)	2515(1)	5022(1)	6264(2)	19(1)	2.249
Ba(3)	2500	7500	6294(3)	17(1)	2.247
Sn (1)	1136(1)	1245(1)	6294(1)	15(1)	4.026
Cd(1)	3876(1)	1244(1)	6302(2)	24(1)	2.071
Sn(2)	1822(1)	3754(1)	3376(1)	16(1)	4.033
Se(1)	2113(1)	3770(2)	5148(2)	16(1)	2.115
Cd(2)	1758(1)	6249(1)	4125(2)	25(1)	2.035
Se(2)	2182(1)	6255(2)	7465(2)	17(1)	2.245
Se(3)	1213(2)	5378(1)	5149(3)	18(1)	1.989
Se(4)	1201(2)	2117(1)	5140(3)	18(1)	1.949
Se(5)	2828(1)	6265(2)	5056(2)	19(1)	2.142
Se(6)	3720(2)	5378(1)	7618(3)	19(1)	2.014
Se(7)	3702(2)	2114(1)	7613(3)	18(1)	1.999
Se(8)	2094(1)	1243(2)	7308(2)	16(1)	2.214

Table S1. (a) Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for BaCdSnSe₄ U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Note: To provide a check on the consistency of the structure determination, the method of Bond-Valence Parameters was used to calculate the bond valences of elements (Refs 1, 2). The following equation is commonly used to calculate the bond valence (v_{ii}) :

$$V_i = \sum_{j} v_{ij} = \sum_{j} \exp\left(\frac{r' - r_{ij}}{B}\right)$$

where *r*' is empirically determined bond valence parameter, r_{ij} is actual bond length, and *B* is commonly taken to be a universal constant equal to 0.37 Å. Bond valence v_{ij} is defined as sum of the bond valences between the atom *i* and *j*.

The calculated results have some deviations with oxidation states of elements, but they are still in the reasonable range. Therefore, we think that the calculated values are reasonable and can be acceptable.

Ref S1. I. D. Brown, and D. Altermatt, *Acta Crystallogr. Sect. B* 1985, **41**, 244. Ref S2. N. E. Brese, and M. Okeeffe, *Acta Crystallogr. Sect. B* 1991, **47**, 192.

Atom	Х	У	Z	U_{eq}	BVS
Ba(1)	10945(1)	8828(1)	8441(1)	25(1)	1.924
Ba(2)	14663(1)	8469(1)	6592(1)	28(1)	1.995
Sn(1)	8065(1)	8139(1)	4933(1)	22(1)	4.108
Se(1)	7629(1)	8830(1)	2880(1)	25(1)	2.259
Se(2)	7623(1)	10213(1)	6092(1)	24(1)	2.109
Se(3)	10905(1)	6896(1)	6066(1)	23(1)	2.018
Se(4)	5776(1)	6291(1)	4567(1)	32(1)	1.641

Table S1. (b) Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for Ba₂SnSe₄ U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U_{eq}	BVS
Ba(1)	1368(1)	2596(3)	6064(1)	23(1)	1.875
Ba(2)	3629(1)	-2460(3)	9695(1)	23(1)	1.870
Ge(1)	4252(2)	1591(4)	7333(2)	14(1)	4.000
Ge(2)	749(2)	6558(4)	3069(2)	15(1)	3.964
S(1)	3211(4)	2424(10)	5662(4)	17(1)	1.975
S(2)	1798(4)	-2381(10)	7441(4)	19(1)	1.963
S(3)	4238(4)	-2344(10)	7386(4)	17(1)	2.069
S(4)	756(4)	2563(10)	3143(4)	17(1)	2.038
S(5)	-1010(4)	2518(10)	5255(4)	22(1)	1.831
S(6)	3996(4)	-7486(10)	8754(4)	22(1)	1.833

Table S1. (c) Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² \times 10³) for Ba₂Ge₂S₆ U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	х	у	Z	U_{eq}	BVS
Se(1)	929(1)	7500	7773(2)	11(1)	2.016
Se(2)	1683(1)	5155(1)	2458(1)	12(1)	1.825
Se(3)	-709(1)	7500	2525(2)	12(1)	1.991
Ge(1)	886(1)	7500	4107(2)	9(1)	3.853
Mg(1)	-2305(3)	7500	5052(6)	14(1)	1.845
Mg(2)	0	5000	0	15(1)	1.957

Table S1. (d) Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Mg₂GeSe₄ U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

	bolid distances	(11) and angles (deg) for Dae	donoc4.
Ba(1)-Se(8)#1	3.320(5)	Se(8)#1-Ba(1)-Se(8)	128.90(18)
Ba(1)-Se(8)	3.320(5)	Se(8)#1-Ba(1)-Se(1)#1	149.17(5)
Ba(1)-Se(1)#1	3.366(5)	Se(8)-Ba(1)-Se(1)#1	61.75(7)
Ba(1)-Se(1)	3.366(5)	Se(8)#1-Ba(1)-Se(1)	61.75(7)
Ba(1)-Se(7)	3.379(5)	Se(8)-Ba(1)-Se(1)	149.17(5)
Ba(1)-Se(7)#1	3.379(5)	Se(1)#1-Ba(1)-Se(1)	126.93(17)
Ba(1)-Se(4)	3.392(4)	Se(8)#1-Ba(1)-Se(7)	76.68(10)
Ba(1)-Se(4)#1	3.392(4)	Se(8)-Ba(1)-Se(7)	76.07(9)
Ba(2)-Se(8)#1	3.322(4)	Se(1)#1-Ba(1)-Se(7)	79.42(8)
Ba(2)-Se(2)	3.326(5)	Se(1)-Ba(1)-Se(7)	132.20(8)
Ba(2)-Se(5)	3.339(5)	Se(8)#1-Ba(1)-Se(7)#1	76.07(9)
Ba(2)-Se(1)	3.347(5)	Se(8)-Ba(1)-Se(7)#1	76.68(10)
Ba(2)-Se(6)	3.362(5)	Se(1)#1-Ba(1)-Se(7)#1	132.20(8)
Ba(2)-Se(3)	3.383(5)	Se(1)-Ba(1)-Se(7)#1	79.42(8)
Ba(2)-Se(7)#2	3.397(5)	Se(7)-Ba(1)-Se(7)#1	113.78(18)
Ba(2)-Se(4)#3	3.428(5)	Se(8)#1-Ba(1)-Se(4)	130.35(8)
Ba(3)-Se(2)#4	3.321(5)	Se(8)-Ba(1)-Se(4)	74.78(8)
Ba(3)-Se(2)	3.321(5)	Se(1)#1-Ba(1)-Se(4)	78.58(10)
Ba(3)-Se(5)	3.352(5)	Se(1)-Ba(1)-Se(4)	78.42(10)
Ba(3)-Se(5)#4	3.352(5)	Se(7)-Ba(1)-Se(4)	149.32(6)
Ba(3)-Se(3)#5	3.391(5)	Se(7)#1-Ba(1)-Se(4)	68.13(12)
Ba(3)-Se(3)#3	3.391(5)	Se(8)#1-Ba(1)-Se(4)#1	74.78(8)
Ba(3)-Se(6)#6	3.392(4)	Se(8)-Ba(1)-Se(4)#1	130.35(8)
Ba(3)-Se(6)#2	3.392(4)	Se(1)#1-Ba(1)-Se(4)#1	78.42(10)
Sn(1)-Se(5)#7	2.493(4)	Se(1)-Ba(1)-Se(4)#1	78.58(10)
Sn(1)-Se(7)#8	2.529(4)	Se(7)-Ba(1)-Se(4)#1	68.13(12)
Sn(1)-Se(4)	2.531(4)	Se(7)#1-Ba(1)-Se(4)#1	149.32(6)
Sn(1)-Se(8)	2.548(3)	Se(4)-Ba(1)-Se(4)#1	127.0(2)
Cd(1)-Se(2)#9	2.561(4)	Se(8)#1-Ba(2)-Se(2)	125.27(13)
Cd(1)-Se(7)	2.688(5)	Se(8)#1-Ba(2)-Se(5)	152.39(12)
Cd(1)-Se(4)#10	2.700(5)	Se(2)-Ba(2)-Se(5)	64.95(8)
Cd(1)-Se(1)#1	2.711(4)	Se(8)#1-Ba(2)-Se(1)	61.92(8)
Sn(2)-Se(1)	2.494(4)	Se(2)-Ba(2)-Se(1)	151.34(11)
Sn(2)-Se(3)#11	2.524(4)	Se(5)-Ba(2)-Se(1)	123.52(13)
Sn(2)-Se(6)#12	2.532(5)	Se(8)#1-Ba(2)-Se(6)	76.31(10)
Sn(2)-Se(2)#12	2.548(3)	Se(2)-Ba(2)-Se(6)	73.04(9)
Cd(2)-Se(8)#13	2.581(4)	Se(5)-Ba(2)-Se(6)	84.14(9)
Cd(2)-Se(6)#6	2.683(5)	Se(1)-Ba(2)-Se(6)	131.94(10)
Cd(2)-Se(3)	2.708(5)	Se(8)#1-Ba(2)-Se(3)	128.66(10)
Cd(2)-Se(5)	2.708(3)	Se(2)- $Ba(2)$ - $Se(3)$	79.95(8)
Se(1)-Sn(2)-Se(2)#12	103.95(11)	Se(5)-Ba(2)-Se(3)	76.01(9)
Se(3)#11-Sn(2)-Se(2)#12	102.61(15)	Se(1)-Sn(2)-Se(6)#12	120.42(16)
Se(6)#12- $Sn(2)$ - $Se(2)$ #12	103.18(14)	Se(3)#11-Sn(2)-Se(6)#12	103.12(13)

Table S2. (a) Selected bond distances (Å) and angles (deg) for BaCdSnSe₄.

Se(1)-Ba(2)-Se(3)	76.60(10)	Se(7)#2-Ba(2)-Se(4)#3	148.05(7)
Se(6)-Ba(2)-Se(3)	151.43(7)	Se(2)#4-Ba(3)-Se(2)	122.72(18)
Se(8)#1-Ba(2)-Se(7)#2	74.82(9)	Se(2)#4-Ba(3)-Se(5)	154.95(5)
Se(2)-Ba(2)-Se(7)#2	130.18(10)	Se(2)-Ba(3)-Se(5)	64.86(8)
Se(5)-Ba(2)-Se(7)#2	80.08(10)	Se(2)#4-Ba(3)-Se(5)#4	64.86(8)
Se(1)-Ba(2)-Se(7)#2	77.70(9)	Se(2)-Ba(3)-Se(5)#4	154.95(5)
Se(6)-Ba(2)-Se(7)#2	68.94(14)	Se(5)-Ba(3)-Se(5)#4	119.75(18)
Se(3)-Ba(2)-Se(7)#2	125.95(16)	Se(2)#4-Ba(3)-Se(3)#5	77.52(10)
Se(8)#1-Ba(2)-Se(4)#3	75.15(9)	Se(2)-Ba(3)-Se(3)#5	72.28(9)
Se(2)-Ba(2)-Se(4)#3	77.29(10)	Se(5)-Ba(3)-Se(3)#5	83.42(8)
Se(5)-Ba(2)-Se(4)#3	131.39(10)	Se(5)#4-Ba(3)-Se(3)#5	131.27(8)
Se(1)-Ba(2)-Se(4)#3	78.78(9)	Se(2)#4-Ba(3)-Se(3)#3	72.28(9)
Se(6)-Ba(2)-Se(4)#3	113.71(14)	Se(2)-Ba(3)-Se(3)#3	77.52(10)
Se(3)-Ba(2)-Se(4)#3	67.94(14)	Se(5)-Ba(3)-Se(3)#3	131.27(8)
Se(5)#4-Ba(3)-Se(6)#2	74.73(10)	Se(5)#4-Ba(3)-Se(3)#3	83.41(8)
Se(3)#5-Ba(3)-Se(6)#2	69.10(12)	Se(3)#5-Ba(3)-Se(3)#3	114.23(18)
Se(3)#3-Ba(3)-Se(6)#2	150.24(6)	Se(2)#4-Ba(3)-Se(6)#6	128.48(8)
Se(6)#6-Ba(3)-Se(6)#2	123.8(2)	Se(2)-Ba(3)-Se(6)#6	80.17(8)
Se(5)#7-Sn(1)-Se(7)#8	118.19(15)	Se(5)-Ba(3)-Se(6)#6	74.73(10)
Se(5)#7-Sn(1)-Se(4)	118.29(16)	Se(5)#4-Ba(3)-Se(6)#6	77.92(10)
Se(7)#8-Sn(1)-Se(4)	101.95(13)	Se(3)#5-Ba(3)-Se(6)#6	150.24(6)
Se(5)#7-Sn(1)-Se(8)	103.81(12)	Se(3)#3-Ba(3)-Se(6)#6	69.10(12)
Se(7)#8-Sn(1)-Se(8)	107.04(14)	Se(2)#4-Ba(3)-Se(6)#2	80.17(8)
Se(4)-Sn(1)-Se(8)	106.73(14)	Se(2)-Ba(3)-Se(6)#2	128.48(8)
Se(2)#9-Cd(1)-Se(7)	124.84(17)	Se(5)-Ba(3)-Se(6)#2	77.92(10)
Se(2)#9-Cd(1)-Se(4)#10	125.48(16)	Se(8)#13-Cd(2)-Se(6)#6	128.01(17)
Se(7)-Cd(1)-Se(4)#10	93.73(12)	Se(8)#13-Cd(2)-Se(3)	128.22(17)
Se(2)#9-Cd(1)-Se(1)#1	99.50(12)	Se(6)#6-Cd(2)-Se(3)	94.53(12)
Se(7)-Cd(1)-Se(1)#1	105.92(14)	Se(8)#13-Cd(2)-Se(5)	100.89(11)
Se(4)#10-Cd(1)-Se(1)#1	105.24(14)	Se(6)#6-Cd(2)-Se(5)	98.77(14)
Se(1)-Sn(2)-Se(3)#11	120.83(16)	Se(3)-Cd(2)-Se(5)	99.67(14)

Note. Symmetry transformations used to generate equivalent atoms:

#1 -x+1/2,-y+1/2,z	#2 -x+3/4,y+1/4,z-1/4
#3 -x+1/4,y+1/4,z+1/4	#4 -x+1/2,-y+3/2,z
#5 x+1/4,-y+5/4,z+1/4	#6 x-1/4,-y+5/4,z-1/4
#7 x-1/4,-y+3/4,z+1/4	#8 x-1/4,-y+1/4,z-1/4
#9 x+1/4,-y+3/4,z-1/4	#10 x+1/4,-y+1/4,z+1/4
#11 -x+1/4,y-1/4,z-1/4	#12 -x+1/2,-y+1,z-1/2
#13 x,y+1/2,z-1/2 #	14 -x+1/2,-y+1,z+1/2
#15 -x+3/4,y-1/4,z+1/4	#16 x,y-1/2,z+1/2

Table S2	(b) Selected bond	d distances (Å) ar	nd angles (deg)	for Ba ₂ SnSe ₄

Table S2. (b) Select	ted bond distance	es (Å) and angles (deg) for B	a ₂ SnSe ₄ .
$Ba(1)-Se(1)\#\overline{1}$	3.2501(12)	Se(2)-Ba(1)-Se(4)#5	137.23(3)
Ba(1)-Se(3)#2	3.3528(13)	Se(3)#3-Ba(1)-Se(4)#5	118.29(3)
Ba(1)-Se(2)	3.3878(13)	Se(3)-Ba(1)-Se(4)#5	85.76(3)
Ba(1)-Se(3)#3	3.4293(12)	Se(2)#4-Ba(1)-Se(4)#5	70.00(3)
Ba(1)-Se(3)	3.4454(12)	Se(1)#2-Ba(1)-Se(4)#5	135.02(3)
Ba(1)-Se(2)#4	3.5292(12)	Se(4)#3-Ba(1)-Se(4)#5	49.60(3)
Ba(1)-Se(1)#2	3.6054(13)	Se(1)#5-Ba(2)-Se(2)#6	84.47(3)
Ba(1)-Se(4)#3	3.6786(14)	Se(1)#5-Ba(2)-Se(2)#1	139.95(3)
Ba(1)-Se(4)#5	3.7929(15)	Se(2)#6-Ba(2)-Se(2)#1	79.16(3)
Ba(2)-Se(1)#5	3.1975(12)	Se(1)#5-Ba(2)-Se(3)	108.23(3)
Ba(2)-Se(2)#6	3.2784(13)	Se(2)#6-Ba(2)-Se(3)	159.43(3)
Ba(2)-Se(2)#1	3.3353(13)	Se(2)#1-Ba(2)-Se(3)	80.84(3)
Ba(2)-Se(3)	3.3490(13)	Se(1)#5-Ba(2)-Se(1)#1	142.62(2)
Ba(2)-Se(1)#1	3.4088(13)	Se(2)#6-Ba(2)-Se(1)#1	103.27(3)
Ba(2)-Se(4)#5	3.4348(14)	Se(2)#1-Ba(2)-Se(1)#1	77.11(3)
Ba(2)-Se(4)#6	3.6492(14)	Se(3)-Ba(2)-Se(1)#1	76.74(3)
Sn(1)-Se(4)	2.5010(13)	Se(1)#5-Ba(2)-Se(4)#5	71.96(3)
Sn(1)-Se(1)	2.5108(13)	Se(2)#6-Ba(2)-Se(4)#5	106.26(3)
Sn(1)-Se(2)	2.5226(12)	Se(2)#1-Ba(2)-Se(4)#5	147.83(3)
Sn(1)-Se(3)	2.5351(13)	Se(3)-Ba(2)-Se(4)#5	93.27(3)
Se(1)#1-Ba(1)-Se(3)#2	141.66(3)	Se(1)#1-Ba(2)-Se(4)#5	70.77(3)
Se(1)#1-Ba(1)-Se(2)	70.62(3)	Se(1)#5-Ba(2)-Se(4)#6	66.35(3)
Se(3)#2-Ba(1)-Se(2)	125.17(3)	Se(2)#6-Ba(2)-Se(4)#6	72.37(3)
Se(1)#1-Ba(1)-Se(3)#3	80.59(3)	Se(2)#1-Ba(2)-Se(4)#6	73.89(3)
Se(3)#2-Ba(1)-Se(3)#3	78.44(3)	Se(3)-Ba(2)-Se(4)#6	97.45(3)
Se(2)-Ba(1)-Se(3)#3	63.53(3)	Se(1)#1-Ba(2)-Se(4)#6	150.98(3)
Se(1)#1-Ba(1)-Se(3)	77.54(3)	Se(4)#5-Ba(2)-Se(4)#6	138.25(3)
Se(3)#2-Ba(1)-Se(3)	137.20(2)	Se(4)-Sn(1)-Se(1)	102.23(4)
Se(2)-Ba(1)-Se(3)	75.31(3)	Se(4)-Sn(1)-Se(2)	109.43(5)
Se(3)#3-Ba(1)-Se(3)	137.85(2)	Se(1)-Sn(1)-Se(2)	113.27(4)
Se(1)#1-Ba(1)-Se(2)#4	122.54(3)	Se(4)-Sn(1)-Se(3)	107.11(4)
Se(3)#2-Ba(1)-Se(2)#4	78.02(3)	Se(1)-Sn(1)-Se(3)	112.93(4)
Se(2)-Ba(1)-Se(2)#4	127.83(3)	Se(2)-Ba(1)-Se(4)#3	119.13(3)
Se(3)#3-Ba(1)-Se(2)#4	155.63(3)	Se(3)#3-Ba(1)-Se(4)#3	69.39(3)
Se(3)-Ba(1)-Se(2)#4	61.93(3)	Se(3)-Ba(1)-Se(4)#3	129.48(3)
Se(1)#1-Ba(1)-Se(1)#2	142.02(2)	Se(2)#4-Ba(1)-Se(4)#3	111.02(3)
Se(3)#2-Ba(1)-Se(1)#2	74.28(3)	Se(1)#2-Ba(1)-Se(4)#3	151.35(3)
Se(2)-Ba(1)-Se(1)#2	76.93(3)	Se(1)#1-Ba(1)-Se(4)#5	67.97(3)
Se(3)#3-Ba(1)-Se(1)#2	102.31(3)	Se(3)#2-Ba(1)-Se(4)#5	94.67(3)
Se(3)-Ba(1)-Se(1)#2	75.57(3)	Se(1)#1-Ba(1)-Se(4)#3	65.50(3)
Se(2)#4-Ba(1)-Se(1)#2	65.08(3)	Se(3)#2-Ba(1)-Se(4)#3	77.16(3)

Note. Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y+2,-z+1	#2 x,-y+3/2,z+	1/2
#3 -x+2,y+1/2,-z+3/2	#4 -x+2,y-1/2	2,-z+3/2
#5 x+1,-y+3/2,z+1/2	#6 x+1,y,z	#7 x,-y+3/2,z-1/2
	#8 x-1,-y+3/2,2	z-1/2 #9 x-1,y,z

1 4010 82. (0) 801000	eu conu uncune	is (i i) and angles (deg) for i	3a ₂ 3c ₂ 3c.
Ba(1)-S(1)	3.106(6)	S(1)-Ba(1)-S(5)#1	83.36(15)
Ba(1)-S(5)#1	3.243(6)	S(1)-Ba(1)-S(4)#2	139.41(13)
Ba(1)-S(4)#2	3.311(5)	S(5)#1-Ba(1)-S(4)#2	116.19(15)
Ba(1)-S(2)	3.319(6)	S(1)-Ba(1)-S(2)	95.33(14)
Ba(1)-S(5)	3.332(6)	S(5)#1-Ba(1)-S(2)	178.45(15)
Ba(1)-S(2)#3	3.342(6)	S(4)#2-Ba(1)-S(2)	64.36(14)
Ba(1)-S(5)#4	3.357(6)	S(1)-Ba(1)-S(5)	153.83(12)
Ba(1)-S(4)	3.612(5)	S(5)#1-Ba(1)-S(5)	86.09(15)
Ba(2)-S(2)	3.113(5)	S(4)#2-Ba(1)-S(5)	66.49(12)
Ba(2)-S(6)#3	3.278(6)	S(2)-Ba(1)-S(5)	95.44(14)
Ba(2)-S(6)	3.304(6)	S(1)-Ba(1)-S(2)#3	98.46(15)
Ba(2)-S(3)#5	3.316(5)	S(5)#1-Ba(1)-S(2)#3	59.74(12)
Ba(2)-S(1)#5	3.317(6)	S(4)#2-Ba(1)-S(2)#3	67.55(14)
Ba(2)-S(6)#6	3.328(6)	S(2)-Ba(1)-S(2)#3	119.76(14)
Ba(2)-S(1)#2	3.352(6)	S(5)-Ba(1)-S(2)#3	96.75(14)
Ba(2)-S(3)	3.606(5)	S(1)-Ba(1)-S(5)#4	80.43(15)
Ge(1)-S(1)	2.169(5)	S(5)#1-Ba(1)-S(5)#4	121.59(14)
Ge(1)-S(6)#3	2.173(5)	S(4)#2-Ba(1)-S(5)#4	112.25(14)
Ge(1)-S(3)#7	2.270(6)	S(2)-Ba(1)-S(5)#4	58.86(12)
Ge(1)-S(3)	2.268(6)	S(5)-Ba(1)-S(5)#4	84.90(16)
Ge(2)-S(2)#8	2.172(6)	S(2)#3-Ba(1)-S(5)#4	178.02(14)
Ge(2)-S(5)#1	2.172(5)	S(1)-Ba(1)-S(4)	68.87(13)
Ge(2)-S(4)#9	2.251(6)	S(5)#1-Ba(1)-S(4)	60.63(13)
Ge(2)-S(4)	2.303(6)	S(4)#2-Ba(1)-S(4)	151.53(18)
S(2)-Ba(1)-S(4)	119.67(13)	S(1)#5-Ba(2)-S(6)#6	95.37(14)
S(5)-Ba(1)-S(4)	85.08(12)	S(2)-Ba(2)-S(1)#2	96.86(14)
S(2)#3-Ba(1)-S(4)	120.03(14)	S(6)#3-Ba(2)-S(1)#2	59.12(13)
S(5)#4-Ba(1)-S(4)	61.14(13)	S(6)-Ba(2)-S(1)#2	178.52(15)
S(2)-Ba(2)-S(6)#3	81.18(15)	S(3)#5-Ba(2)-S(1)#2	67.60(13)
S(2)-Ba(2)-S(6)	82.72(15)	S(1)#5-Ba(2)-S(1)#2	119.50(15)
S(6)#3-Ba(2)-S(6)	122.15(15)	S(6)#6-Ba(2)-S(1)#2	96.25(14)
S(2)-Ba(2)-S(3)#5	140.18(14)	S(2)-Ba(2)-S(3)	68.08(13)
S(6)#3-Ba(2)-S(3)#5	115.80(14)	S(6)#3-Ba(2)-S(3)	60.02(13)
S(6)-Ba(2)-S(3)#5	111.86(14)	S(6)-Ba(2)-S(3)	62.38(13)
S(2)-Ba(2)-S(1)#5	98.39(14)	S(3)#5-Ba(2)-S(3)	151.72(18)
S(6)#3-Ba(2)-S(1)#5	178.43(15)	S(1)#5-Ba(2)-S(3)	121.25(13)
S(6)-Ba(2)-S(1)#5	59.22(13)	S(6)#6-Ba(2)-S(3)	85.07(12)
S(3)#5-Ba(2)-S(1)#5	63.62(13)	S(1)#2-Ba(2)-S(3)	118.79(13)
S(2)-Ba(2)-S(6)#6	153.15(13)	S(1)-Ge(1)-S(6)#3	121.3(2)
S(6)#3-Ba(2)-S(6)#6	85.63(15)	S(1)-Ge(1)-S(3)#7	110.8(2)
S(6)-Ba(2)-S(6)#6	84.71(15)	S(6)#3-Ge(1)-S(3)#7	110.5(2)
S(3)#5-Ba(2)-S(6)#6	66.66(13)	S(1)-Ge(1)-S(3)	103.9(2)
S(2)#8-Ge(2)-S(4)	104.2(2)	S(6)#3-Ge(1)-S(3)	102.1(2)

Table S2. (c) Selected bond distances (Å) and angles (deg) for $Ba_2Ge_2S_6$.

S(5)#1-Ge(2)-S(4)	101.8(2)	S(3)#7-Ge(1)-S(3)	106.7(2)
S(4)#9-Ge(2)-S(4)	105.8(2)	S(2)#8-Ge(2)-S(5)#1	120.9(2)
S(5)#1-Ge(2)-S(4)#9	110.8(2)	S(2)#8-Ge(2)-S(4)#9	111.5(2)
Note. Symmetry transform	mations used to	generate equivalent atoms:	
#1 -x,-y+1,-z+1 #2 x	,-y+1/2,z+1/2		
#3 x,y+1,z #4 -x,-y,-z	z+1 #5 x,-y-	1/2, z+1/2	
#6 -x+1,-y-1,-z+2 #7	-x+1,y+1/2,-z+2	3/2	
#8 x,-y+1/2,z-1/2 #9	-x,y+1/2,-z+1/2		
#10 x,-y-1/2,z-1/2 #1	1 x,y-1,z #1	2 -x+1,y-1/2,-z+3/2	
#13 -x,y-1/2,-z+1/2			

~ /			
Ge(1)-Se(2)#7	2.376(3)	Se(1)#12-Mg(2)-Se(1)#4	180.00(4)
Mg(1)-Se(2)#1	2.750(4)	Se(3)#11-Mg(2)-Se(2)	94.44(11)
Mg(1)-Se(2)#4	2.750(4)	Se(3)-Mg(2)-Se(2)	85.56(11)
Mg(1)-Se(1)#8	2.758(6)	Se(1)#12-Mg(2)-Se(2)	83.38(11)
Mg(1)-Se(2)#9	2.795(4)	Se(1)#4-Mg(2)-Se(2)	96.62(11)
Mg(1)-Se(2)#10	2.795(4)	Se(3)#11-Mg(2)-Se(2)#11	85.56(11)
Mg(2)-Se(3)#11	2.711(3)	Se(3)-Mg(2)-Se(2)#11	94.44(11)
Mg(2)-Se(1)#12	2.726(3)	Se(1)#12-Mg(2)-Se(2)#11	96.62(11)
Mg(2)-Se(1)#4	2.726(3)	Se(1)#4-Mg(2)-Se(2)#11	83.38(11)
Mg(2)-Se(2)#11	2.761(5)	Se(2)-Mg(2)-Se(2)#11	180.000(19)
Se(1)-Ge(1)-Se(2)#7	115.50(7)	Se(2)#1-Mg(1)-Se(2)#10	88.83(14)
Se(1)-Ge(1)-Se(2)	115.50(7)	Se(2)#4-Mg(1)-Se(2)#10	168.02(13)
Se(2)#7-Ge(1)-Se(2)	101.56(15)	Se(1)#8-Mg(1)-Se(2)#10	82.19(15)
Se(1)-Ge(1)-Se(3)	116.46(9)	Se(2)#9-Mg(1)-Se(2)#10	82.41(17)
Se(2)#7-Ge(1)-Se(3)	102.87(10)	Se(3)#11-Mg(2)-Se(3)	180.00(4)
Se(2)-Ge(1)-Se(3)	102.87(10)	Se(3)#11-Mg(2)-Se(1)#12	92.90(14)
Se(3)-Mg(1)-Se(2)#1	95.76(14)	Se(3)-Mg(2)-Se(1)#12	87.10(14)
Se(3)-Mg(1)-Se(2)#4	95.76(14)	Se(3)#11-Mg(2)-Se(1)#4	87.10(14)
Se(2)#1-Mg(1)-Se(2)#4	98.58(19)	Se(3)-Mg(2)-Se(1)#4	92.90(14)
Se(3)-Mg(1)-Se(1)#8	173.38(16)	Se(2)#1-Mg(1)-Se(2)#9	168.02(13)
Se(2)#1-Mg(1)-Se(1)#8	88.55(13)	Se(2)#4-Mg(1)-Se(2)#9	88.83(14)
Se(2)#4-Mg(1)-Se(1)#8	88.55(13)	Se(1)#8-Mg(1)-Se(2)#9	82.19(15)
Se(3)-Mg(1)-Se(2)#9	92.84(16)	Se(3)-Mg(1)-Se(2)#10	92.84(16)

Table S2. (d) Selected bond distances (Å) and angles (deg) for Mg_2GeSe_4 .

Note. Symmetry transformations used to generate equivalent atoms:

#1 -x,y+1/2,-z+1 #2 x,y,z+1 #3 x+1/2,y,-z+3/2 #4 -x,-y+1,-z+1 #5 x+1/2,y,-z+1/2 #6 -x,y+1/2,-z #7 x,-y+3/2,z #8 x-1/2,y,-z+3/2 #9 x-1/2,y,-z+1/2 #10 x-1/2,-y+3/2,-z+1/2

#11 -x,-y+1,-z

#12 x,y,z-1

Figure S2. IR spectra of title compounds: 1–BaCdSnSe₄; 2–Ba₂SnSe₄; 3–Mg₂GeSe₄; 4–Ba₂Ge₂S₆.

Figure S3. Particle size versus SHG intensity for compound 1.

Figure S4. Band structures of (a) Ba₂SnSe₄, (b) Mg₂GeSe₄ and (c) Ba₂Ge₂S₆.

Figure S5. Total and partial densities of states (PDOS and TDOS) plots of (a) Ba_2SnSe_4 , (b) $Ba_2Ge_2S_6$ and (c) Mg_2GeSe_4 .

Figure S6. Calculated birefringences of title compounds: $1-BaCdSnSe_4$; $2-Ba_2SnSe_4$; $3-Mg_2GeSe_4$; $4-Ba_2Ge_2S_6$.

