Supporting Information for

Group 1 and group 2 metal complexes supported by bidentate bulky iminopyrrolyl ligand: synthesis, structural diversity, and εcaprolactone polymerization study

Ravi K. Kottalanka, A. Harinath, Supriya Rej and Tarun K. Panda*

Department of Chemistry, Indian Institute of Technology Hyderabad, Ordinance Factory Estate, Yeddumailaram 502205, Telangana, India.

Table of Contents

Table TS1. Crystal data and data collection parameters
 I¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of [2-(Ph₃CN=CH)C₄H₃NH] (1-H)
 ¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [2-(Ph₃CN=CH)C₄H₃NH] (1-H)
 ¹⁴H NMR spectrum (400 MHz, 25°C, C₆D₆) of [(THF)₂Li(2-(Ph₃CN=CH)C₄H₃N)] (2)
 ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [(2-(Ph₃CN=CH)C₄H₃N)Li(THF)₂] (2)
 ¹⁴NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}Na(THF)]₂ (3)
 ¹⁵C NMR spectrum (100 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}Na(THF)]₂ (3)
 ¹⁴NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}Na(THF)]₂ (3)
 ¹⁵C NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}K(THF)_{0.5}]₄ (4)
 ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}K(THF)_{0.5}]₄ (4)
 ¹³C NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}{PhCH₂}Mg(THF)₂] (5)
 ¹³C NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}{PhCH₂}Mg(THF)₂] (5)
 ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}{PhCH₂}Mg(THF)₂] (5)
 ¹⁴NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}{PhCH₂}Mg(THF)₂] (6)
 ¹⁵C NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}₂Mg(THF)₂] (6)
 ¹⁴NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}₂Mg(THF)₂] (7)
 ¹⁴NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}₂Ca(THF)₂] (7)

S15. ¹H NMR spectrum (400 MHz, 25°C, C₆D₆) of [$\{2-(Ph_3CN=CH)C_4H_3N\}_2Sr(THF)_2$] (**8**) **S16.** ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [$\{2-(Ph_3CN=CH)C_4H_3N\}_2Sr(THF)_2$] (**8**) **S17.** ¹H NMR spectrum (400 MHz, 25°C, C₆D₆) of [$\{2-(Ph_3CN=CH)C_4H_3N\}_2Ba(THF)_3$] (**9**) **S18.** ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [$\{2-(Ph_3CN=CH)C_4H_3N\}_2Ba(THF)_3$] (**9**) **S19.** ¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of Poly(ϵ -Caprolactone) initiated by complex (**9**) **S20.** ¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of Poly(ϵ -Caprolactone)

Table TS 1: Crystallographic details of details of ligand 1-H and complexes 2-9.

Crystal	1-H	2	3	4	5
CCDC No.	1418542	1418543	1418544	1418545	1418546
Empirical formula	$C_{24}H_{20}N_2$	$C_{32}H_{35}LiN_2O_2$	$C_{56}H_{54}N_4Na_2O_2$	$C_{104}H_{92}K_4N_8O_2$	$C_{39}H_{42}MgN_2$
					O ₂
Formula weight	336.42	486.56	861.01	1642.26	595.06
$T(\mathbf{K})$	293(2)	150(2)	150(2)	150(2)	113(2)
λ (Å)	1.54184	1.54184	1.54184	1.54184	0.71075
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_1/c$	Pbca	$P 2_l/c$	$P 2_1/c$	<i>P</i> -1
a (Å)	11.7601(8)	16.6177(16)	9.3375(5)	16.7937(12)	9.530(3)
b (Å)	10.7213(9)	16.4089(8)	17.8616(9)	10.7713(6)	17.850(6)
c (Å)	29.0076(15)	39.7532(16)	15.0867(10)	24.1946(17)	20.350(7)
α (°)	90	90	90	90	109.890(4)
β (°)	98.480(7)	90	111.528(5)	90.543(8)	96.251(2)
γ (°)	90	90	90	90	93.303(3)
V (A ³)	3617.4(4)	10839.8(12)	2340.7(2)	4376.4(5)	3219.3(18)
Z	8	16	2	2	4
$D_{\text{calc}} \text{ g cm}^{-3}$	1.235	1.193	1.222	1.246	1.228
μ (mm ⁻¹)	0.557	0.570	1.54184	2.239	0.092
F (000)	1424.0	4160	912	1728	1272
Theta range for data	6.16 to 143.63	3.47 to 71.08	4.01 to 70.95 deg.	3.65 to 70.78 deg.	3.02 to 27.00
collection	deg.	deg.			deg.
Limiting indices	-14<=h<=13	-17<=h<=19	-11<=h<=11,	-16<=h<=20	-12<=h<=12
	-11<=k<=13	-18<=k<=19	-16<=k<=21,	-13<=k<=12	-21<=k<=22
	-35<=1<=19	-48<=l<=47	-15<=l<=18	-29<=l<=29	-25<=l<=25
Reflections	13546 / 6866	24230 / 8741	10068 / 4424	21120 / 8234	30518 /
collected / unique	[R(int) = 0.0667]	[R(int) = 0.0562]	[R(int) = 0.0266]	[R(int) = 0.0891]	13802
					[R(int) =
					0.0333]

Completeness to theta = 71.25	96.6 % (70.94)	83.3 % (71.08)	97.7 %	97.7 % (70.78)	98.2 % (27.00)
Absorption correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan	Multi-scan
Max. and min. transmission	1.00000 and 0.25106	0.91 and 0.86	0.75 and 0.64	1.00000 and 0.62549	0.9746 and 0.9728
Refinement method	Full-matrix least- squares on F ²	Full-matrix least- squares on F ²	Full-matrix least-squares on F ²	Full-matrix least- squares on F ²	Full-matrix least-squares on F^2
Data / restraints / parameters	6866/0/470	8741 / 0 / 679	4424 / 0 / 289	8234 / 0 / 532	13802 / 0 / 793
Goodness-of-fit on F ²	1.045	1.028	1.045	1.029	1.051
Final R indices [I>2sigma(I)]	R1 = 0.1059,wR2 = 0.2790	R1 = 0.0792,wR2 = 0.2056	$R_1 = 0.0524, wR_2 = 0.1416$	R1 = 0.0796,wR2 = 0.2067	R1 = 0.0651, wR2 = 0.1577
R indices (all data)	R1 = 0.1878,wR2 = 0.3599	R1 = 0.1315,wR2 = 0.2412	$R_1 = 0.0597, \\ wR_2 = 0.1492$	R1 = 0.1102, wR2 = 0.2461	R1 = 0.0988, wR2 = 0.1893
Largest diff. peak and hole	0.42 and -0.38 e.A ⁻³	0.339 and -0.267 e.A ⁻³	0.456 and -0.548 e.A ⁻³	0.641 and -0.574 e.A ⁻³	0.906 and - 0.526 e.A ⁻³

 Table TS 1: Crystallographic details of details of ligand 1-H and complexes 2-9 (contd).

Crystal	6	7	8	9
CCDC No.	1418547	1418548	1418549	1418550
Empirical formula	$C_{56}H_{54}MgN_4O_2$	$C_{66}H_{70}CaN_4O_4$	$C_{60}H_{62}N_4O_3Sr$	$C_{68}H_{77}BaN_4O_5$
Formula weight	839.34	999.32	974.76	1167.68
$T(\mathbf{K})$	150(2)	113(2)	150(2)	150(2)
λ (Å)	1.54184	0.71075	1.54184	1.54184
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	$P 2_1/n$	<i>P</i> -1	<i>P</i> -1
a (Å)	9.9208(12)	11.185(18)	11.5131(13)	10.7818(11)
b (Å)	9.9609(15)	13.42(2)	13.2509(13)	14.4888(15)
c (Å)	12.4778(12)	18.43(3)	18.1457(15)	21.2076(19)
α (°)	108.752(11)	90	75.334(8)	109.626(9)
β (°)	92.798(9)	104.24(2)	78.968(9)	93.344(8)
γ (°)	106.729(12)	90	71.140(10)	106.825(9)
V (Å ³)	1104.5(3)	2681(7)	2516.1(4)	2942.1(5)
Ζ	1	2	2	2
$D_{\rm calc} \ {\rm g} \ {\rm cm}^{-3}$	1.262	1.238	1.287	1.318
μ (mm ⁻¹)	0.722	0.170	1.871	5.668

F (000)	446	1068	1024	1218
Theta range for data	3.787 to 70.588 deg.	3.04 to 26.00 deg.	3.60 to 71.27deg.	3.33 to 71.43 deg.
collection				
Limiting indices	-12<=h<=11,	-13<=h<=12	-14<=h<=14	-12<=h<=13,
	-9<=k<=12,	-15<=k<=16	-11<=k<=16	-17<=k<=17,
	-15<=l<=15	-22<=l<=18	-21<=l<=22	-17<=l<=25
Reflections collected /	7976 / 4126	11436 / 5075	19225 / 9452	21652 / 11049
unique	[R(int) = 0.0321]	[R(int) = 0.1009]	[R(int) = 0.0559]	[R(int) = 0.0796]
Completeness to theta =	99.7 % (67.68)	96.3 % (26.00)	96.7 % (71.27)	96.5 %
71.25				
Absorption correction	Multi-scan	Multi-scan	Multi-scan	Multi-scan
Max. and min.	1.00000 and 0.82260	0.9668 and 0.9668	1.00000 and 0.92842	1.000 and 0.51963
transmission				
Refinement method	Full-matrix	Full-matrix least-squares	Full-matrix least-	Full-matrix
	least-squares on F ²	on F^2	squares on F^2	least-squares on F ²
Data / restraints /	4126 / 0 / 290	5075 / 0 / 331	9452 / 0 / 613	11049 / 0 / 703
parameters				
Goodness-of-fit on F ²	1.039	0.999	1.094	1.009
Final R indices	$R_1 = 0.0417,$	R1 = 0.0766,	R1 = 0.0925,	$R_1 = 0.0667,$
[I>2sigma(I)]	$wR_2 = 0.1019$	wR2 = 0.1573	wR2 = 0.2361	$wR_2 = 0.1670$
R indices (all data)	$R_1 = 0.0539,$	R1 = 0.1713,	R1 = 0.0975,	$R_1 = 0.0874,$
	$wR_2 = 0.1114$	wR2 = 0.2128	wR2 = 0.2480	$wR_2 = 0.2011$
Largest diff. peak and	0.155 and -0.266	0.393 and -0.361	2.717 and -1.215	1.832 and -2.737
hole	e.A ⁻³	e.A ⁻³	e.A ⁻³	e.A ⁻³

S1. ¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of $[2-(Ph_3CN=CH)C_4H_3NH]$ (1-H)

S2. ¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of [2-(Ph₃CN=CH)C₄H₃NH] (1-H)

S3. ¹H NMR spectrum (400 MHz, 25°C, C₆D₆) of [(THF)₂Li(2-(Ph₃CN=CH)C₄H₃N)] (2)

S4. ¹³C NMR spectrum (100 MHz, 25°C, C₆D₆) of [(2-(Ph₃CN=CH)C₄H₃N)Li(THF)₂] (**2**)

S5. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}Na(THF)]₂ (**3**)

S6. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}Na(THF)]₂ (**3**)

S7. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}K(THF)_{0.5}]₄ (4)

S8. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}K(THF)_{0.5}]₄ (4)

S9. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N} {PhCH₂}Mg(THF)₂] (5)

S10. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}{PhCH₂}Mg(THF)₂] (5)

S11. ¹H NMR spectrum (400 MHz, 25°C, C₆D₆) of [{2-(Ph₃CN=CH)C₄H₃N}₂Mg(THF)₂] (6)

S12. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Mg(THF)₂] (6)

S13. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Ca(THF)₂] (7)

S14. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Ca(THF)₂] (7)

S15. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Sr(THF)₂] (8)

S16. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Sr(THF)₂] (8)

S17. ¹H NMR spectrum (400 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Ba(THF)₃] (9)

S18. ¹³C NMR spectrum (100 MHz, 25°C, C_6D_6) of [{2-(Ph₃CN=CH)C₄H₃N}₂Ba(THF)₃] (9)

S19. ¹H NMR spectrum (400 MHz, 25°C, CDCl₃) of Poly(ε-Caprolactone) initiated by complex (9)

S20. ¹³C NMR spectrum (100 MHz, 25°C, CDCl₃) of Poly(ε-Caprolactone)