Journal Name

ARTICLE

Supporting Information

Composite of K-doped (NH₄)₂V₃O₈/Graphene as an Anode Material for Sodium-ion Batteries

Xin Liu, Zhiwei Li, Hailong Fei* and Mingdeng Wei*

1 State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian

350002, China

2 Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China E-mail: <u>fimer@126.com</u> (H.L. Fei), <u>wei-mingdeng@fzu.edu.cn</u>(M.D. Wei)

Fig. S1 XRD pattern of $(NH_4)_{1.92}V_3O_8$ /graphene.

Fig. S2 Raman spectrum of (a) pristine graphene and (b) K-doped (NH₄)₂V₃O₈/graphene materials.

Fig. S3 EDX spectrum of K-doped (NH₄)₂V₃O₈/graphene materials.

Fig. S4 C(1s) X-ray photoelectron spectrum (XPS) of (a) pristine graphene and (b-d) K-doped $(NH_4)_2V_3O_8$ /graphene materials, respectively.

Fig. S5 (a) cycling capacities of the pure reduced graphene at the current density of 0.1 A g⁻¹; (b) cycling performance of K-2 at the current rate of 0.4 A g⁻¹; (c) cycling performance of K-doped (NH₄)₂V₃O₈ materials without graphene at the current density of 100 mA g⁻¹; (d) cycling performance of (NH₄)_{1.92}V₃O₈/graphene at the current density of 0.1 A g⁻¹.

Journal Name ARTICLE

Fig. S6 (a) XRD pattern of K-doped (NH₄)₂V₃O₈ (molar ratio K: V=7.5%); (b) cycling performance of K-doped (NH₄)₂V₃O₈ (molar ratio K: V=7.5%) at the current density of 100 mA g⁻¹; (c-d) SEM images of K-doped (NH₄)₂V₃O₈ (molar ratio K: V=7.5%).

The composition at the molar ratio of K:V=7.5% was investigated in Fig. S6. It can be found that all the diffractions can be indexed with the JCPD: 00-51-1733(Fig. S6a). Meanwhile, the capacity of 193 mA h g⁻¹ was exhibited at the current density of 100 mA g⁻¹ after 100 cycles (Fig. S6 b). SEM images showed that the nanosheets are in the ranges of 200 - 500 nm in width (Fig. S6c, d).

Capacity (mA h g-	Current density (mA g ⁻	Reference
¹)	1)	
235 4 (after 100	100	Prosont
255.4 (atter 100	100	1 I CSCIII
cycles)		work
220 (after 27	50	4
cycles)		
177 (after 100	100	5
cycles)		
303.1 (after 20	10	6
cycles)		
	Capacity (mA h g ⁻ ¹) 235.4 (after 100 cycles) 220 (after 27 cycles) 177 (after 100 cycles) 303.1 (after 20 cycles)	Capacity (mA h g- Current density (mA g- 1) 1) 235.4 (after 100 100 cycles) 100 220 (after 27 50 cycles) 50 177 (after 100 100 cycles) 100 303.1 (after 20 10 cycles) 10

Table S1 The comparison of different vanadium oxides' electrochemical performances.

[4] S. Hartung, N. Bucher, H.Y. Chen, R. Al-Oweini, J. Power Sources, 2015, 288, 270-277.

[5] D.W. Su, S.X. Dou, G.X. Wang, ChemSusChem, 2015, 8, 2877-2882.

[6] H.L. Fei, Z.W. Li, W.J. Feng, X. Liu, Dalton Trans., 2015, 44, 146-150.

ARTICLE