Supporting information for

Iron carbonyl cluster-incorporated $\mathbf{C u}(\mathrm{I})$ NHC complexes in homocoupling of arylboronic acids: an effective $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9}\right]^{2-}$ ligand

Chien-Nan Lin, ${ }^{a}$ Chung-Yi Huang, ${ }^{a}$ Chia-Chi Yu, ${ }^{a}$ Yen-Ming Chen, ${ }^{a}$ Wei-Ming Ke, ${ }^{a}$ Guan-Jung Wang, ${ }^{\text {a }}$ Gon-Ann Lee ${ }^{* b}$ and Minghuey Shieh* ${ }^{\text {a }}$

Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, Republic of China

Department of Chemistry, Fu Jen Catholic University, Xinzhuang, New Taipei 24205, Taiwan,

Contents

Experimental Section S2-S8
Optimization of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ - and 1-4-Catalyzed Homocoupling of 4-Bromophenylboronic Acid
Electrochemical Measurements S10-S11
X-ray Structural Characterization of 1-4 S11-S12
Explanations for the Checkcif Alert S13
Computational Details S14
References S15-S18
Table S1. $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ - and $\mathbf{1}-\mathbf{4}$-catalyzed homocoupling of 4-bromophenylboronic acid: the optimization of the reaction conditions
Table S2. The reported catalytic systems for homocoupling of 4-bromophenylboronic acid
Table S3. Results of natural bond order of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$ S21
Table S4. Differential pulse voltammetry of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$ S22
Table S5. Crystallographic data for 1-4 S23
Table S6. Selected bond distances and bond angles for 1-4 S24-S26
Table S7. Electronic energy and cartesian coordinates of $\mathbf{1}$ S27-S28
Table S8. Electronic energy and cartesian coordinates of 2 S29-S30
Table S9. Electronic energy and cartesian coordinates of $\mathbf{3}$ S31-S32
Table S10. Electronic energy and cartesian coordinates of 4 S33-S34
Figure S1. PXRD patterns for crystals of 1 exposure to air for 10 days S35
Figure S2. ORTEP diagram of 2 S36
Figure S3. ORTEP diagram of $\mathbf{3}$ S37
Figure S4. ORTEP diagram of 4 S38
Figure S5. The proposed mechanism for the homocoupling of 4-bromophenylboronic acid S39Figure S6. Spatial graphs of frontier molecular orbitals forS40$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$
Figure S7. Correlation of product ratios with the Hammett equation S41
Spectroscopic Data of Products S42-S50

Experimental Section

All reactions were performed under an atmosphere of pure nitrogen using standard Schlenk techniques. ${ }^{1}$ Solvents were purified, dried, and distilled under nitrogen prior to use. $\mathrm{KO}^{t} \mathrm{Bu}$, 3-nitrophenylboronic acid, 4-methoxylphenylboronic acid (all ACROS), 2-bromophenylboronic acid (AK Scientific), 3-bromophenylboronic acid (AK Scientific), 4-bromophenylboronic acid (Lancaster), and 4-nitrophenylboronic acid (Lancaster) were used as received. $\left[\mathrm{Et}_{4} \mathrm{~N}_{2}\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9}\right],{ }^{2}\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right],{ }^{3}\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right],{ }^{4}\right.$ $\left[\mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2},{ }^{5}$ and the imidazolium salts, 1,3-dimethylimidazolium iodide $\quad\left(\mathrm{Me}_{2} \mathrm{Im} \cdot \mathrm{HI}\right),{ }^{6 a} \quad 1,1$ '-dimethyl-3,3'-methylene-diimidazolium \quad diiodide $\left(\mathrm{MeImCH}_{2} \mathrm{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}\right),{ }^{6 b} \quad$ 1, ${ }^{\prime}$ '-dimethyl-3,3'-ethylene-diimidazolium dibromide $\left(\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{Br}_{2}\right),{ }^{6 a}$ and 1,1'-dimethyl-3,3'-propylene-diimidazolium diiodide $\left(\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}\right)^{6 c}$ were prepared according to the published methods. Chromatographic purification of compounds was achieved with Merck 60 silica gel (40-63 $\mu \mathrm{m}$). Analytical thin layer chromatography (TLC) was performed on Silica Gel 60 F254 precoated plates. Infrared spectra were recorded on a Perkin-Elmer Paragon 1000 IR spectrometer. The NMR spectra were obtained on a Bruker AV 400 at 400.13 MHz for ${ }^{1} \mathrm{H}$ and 100.61 MHz for ${ }^{13} \mathrm{C}$ or on a Bruker AV 500 at 500.13 MHz for ${ }^{1} \mathrm{H}$ and 125.76 MHz for ${ }^{13} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in parts per million and were calibrated relative to DMSO- $d_{6}\left({ }^{1} \mathrm{H}: 2.49 \mathrm{ppm},{ }^{13} \mathrm{C}: 39.51 \mathrm{ppm}\right)$ as the internal standard. Elemental analyses for

C, H, and N were performed on a Perkin-Elmer 2400 analyzer at the MOST Regional Instrumental Center at National Taiwan University, Taipei, Taiwan.

Synthesis of $\left[\mathrm{TeFe}_{3}(\mathbf{C O})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathbf{I m}\right)_{2}\right]$ (1). A THF solution (20 mL) of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.30 \mathrm{~g}, 0.40 \mathrm{mmol}), \mathrm{Me}_{2} \mathrm{Im} \cdot \mathrm{HI}(0.18 \mathrm{~g}, 0.80 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}$ $(0.090 \mathrm{~g}, 0.80 \mathrm{mmol})$ was stirred at ambient temperature overnight. The resultant solution was filtered, and the solvent was evaporated under vacuum. The residue was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right] \quad$ (1) (yield $0.19 \quad \mathrm{~g}, \quad 0.22 \mathrm{mmol}, 55 \%$ based on $\left.\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]\right)$. IR $\left(v_{\mathrm{CO}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2031(\mathrm{~m}), 1972(\mathrm{vs}), 1918(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 7.30(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}), 3.77\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- $d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 218.90(\mathrm{Fe}-\mathrm{CO}), 178.20\left(C_{\text {carbene }}\right), 122.00(\mathrm{NCH})$, $37.18\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Te}: \mathrm{C}, 26.33 ; \mathrm{H}, 1.86 ; \mathrm{N}, 6.47$. Found: C, 26.10; H, 2.12; N,6.48. Mp: $166{ }^{\circ} \mathrm{C}$ dec. Crystals of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1) suitable for X-ray diffraction were grown from hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Synthesis of $\left[\mathrm{TeFe}_{3}(\mathbf{C O}){ }_{9} \mathbf{C u}_{\mathbf{2}}(\mathbf{M e I m C H} \mathbf{2} \mathbf{I m M e})\right]$ (2). Method 1. A THF solution (20 $\mathrm{mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.60 \mathrm{~g}, 0.79 \mathrm{mmol}), \mathrm{MeImCH} \mathrm{I}_{2} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}(0.34 \mathrm{~g}, 0.79$ $\mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(0.18 \mathrm{~g}, 1.60 \mathrm{mmol})$ was stirred at $40{ }^{\circ} \mathrm{C}$ overnight. The resultant reddish-brown solution was filtered, and the solvent was evaporated under vacuum. The
residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ to give a purplish-brown solution and evaporated under vacuum again. The solid was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH}_{2} \mathrm{ImMe}\right)\right]$ (2) (yield $0.14 \mathrm{~g}, 0.16$ mmol, 20% based on $\left.\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]\right)$. IR ($v_{\mathrm{CO}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2033 (m), 2023 (w), 1987 (vs), 1974 (s), 1934 (w), 1892 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 7.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 7.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 6.54\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N}\right), 6.40\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{~N}\right), 3.77$ (s, $6 \mathrm{H}, \mathrm{NCH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 218.27$ ($\mathrm{Fe}-\mathrm{CO}$), 177.18 $\left(C_{\text {carbene }}\right), 123.40,120.99(\mathrm{NCH}), 62.10\left(\mathrm{NCH}_{2} \mathrm{~N}\right), 37.63\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9}$ Te: C, $25.42 ; \mathrm{H}, 1.42$; N, 6.59. Found: C, $25.53 ; \mathrm{H}, 1.65 ; \mathrm{N}, 6.67 . \mathrm{Mp}: 166$ ${ }^{\circ} \mathrm{C}$ dec. Crystals of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH} \mathrm{I}_{2} \mathrm{ImMe}\right)\right]$ (2) suitable for X-ray diffraction were grown from hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Method 2. Freshly dried THF (10 mL) was added to a mixture of $\mathrm{MeImCH} \mathrm{H}_{2} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}(0.173$ $\mathrm{g}, 0.40 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.090 \mathrm{~g}, 0.80 \mathrm{mmol})$, and the mixture was stirred in an ice-water bath for 2 h . The resultant solution was filtered, and the pale yellow filtrate was then transferred to a THF solution $(10 \mathrm{~mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.30 \mathrm{~g}, 0.40 \mathrm{mmol})$, which was stirred for another 30 min . The resultant solution was filtered, and the solvent was removed under vacuum. The residue was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was
recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH} \mathrm{H}_{2} \mathrm{ImMe}\right)\right]$ (2) (yield $0.14 \mathrm{~g}, 0.16 \mathrm{mmol}, 40 \%$ based on $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$).

Synthesis of $\left[\mathrm{TeFe}_{3}(\mathbf{C O})_{9} \mathbf{C u}_{2}\left(\mathrm{MeIm}\left(\mathbf{C H}_{2}\right)_{2} \mathbf{I m M e}\right)\right]$ (3). Method 1. A THF solution (20 $\mathrm{mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.33 \mathrm{~g}, 0.44 \mathrm{mmol}), \mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{Br}_{2}(0.16 \mathrm{~g}$, $0.45 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(0.099 \mathrm{~g}, 0.88 \mathrm{mmol})$ was stirred at ambient temperature for 5 h . The resultant solution was filtered, and the solvent was evaporated under vacuum. The residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ to give a purplish-brown solution and evaporated under vacuum again. The solid was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ImMe}\right)\right]$ (3) (yield 0.079 g , $0.091 \mathrm{mmol}, 21 \%$ based on $\left.\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]\right)$. IR $\left(v_{\mathrm{CO}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2032(\mathrm{~m}), 1985$ (vs), 1967 (m), 1955 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 7.31$ (s, 2H, $\mathrm{NCH}), 7.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}), 4.58\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.74\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}, 298 \mathrm{~K}, \mathrm{ppm}\right): \delta 218.44$ ($\mathrm{Fe}-\mathrm{CO}$), 176.60 ($C_{\text {carbene }}$), $122.34,121.32(\mathrm{NCH})$, $50.58\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 37.48\left(\mathrm{NCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O} 9 \mathrm{Te}: \mathrm{C}, 26.40 ; \mathrm{H}, 1.63$; N, 6.48. Found: C, 26.62; H, 1.79; N, 6.81. Mp: $171{ }^{\circ} \mathrm{C}$ dec. Crystals of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe}\right)\right]$ (3) suitable for X -ray diffraction were grown from hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Method 2. Freshly dried THF (15 mL) was added to a mixture of $\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{Br}_{2}$
$(0.19 \mathrm{~g}, 0.54 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.12 \mathrm{~g}, 1.07 \mathrm{mmol})$, and the mixture was stirred in an ice-water bath for 3 h . The resultant solution was filtered, and the pale yellow filtrate was then transferred to a THF solution $(10 \mathrm{~mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.40 \mathrm{~g}, 0.53 \mathrm{mmol})$, which was stirred for another 1.5 h . The resultant solution was filtered, and the solvent was removed under vacuum. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution and evaporated under vacuum again. The solid was washed with deionized water and hexanes several times and then extracted with THF to give a purplish-brown solution, which was recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{THF}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe}\right)\right]$ (3) (yield $0.23 \mathrm{~g}, 0.27 \mathrm{mmol}, 51 \%$ based on $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$.

Synthesis of $\left[\mathrm{TeFe}_{3}(\mathbf{C O})_{9} \mathrm{Cu}_{2}\left(\operatorname{MeIm}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{I m M e}\right)\right]$ (4). Method 1. A THF solution (20 $\mathrm{mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.35 \mathrm{~g}, 0.46 \mathrm{mmol}), \mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}(0.21 \mathrm{~g}, 0.46$ $\mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(0.103 \mathrm{~g}, 0.92 \mathrm{mmol})$ was stirred at ambient temperature for 9 h . The resultant solution was filtered, and the solvent was evaporated under vacuum. The residue was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was recrystallized with hexanes/ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{ImMe}\right)\right]$ (4) (yield $0.043 \mathrm{~g}, 0.049 \mathrm{mmol}, 11 \%$ based on $\left.\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]\right)$. IR ($\left.v_{\mathrm{CO}}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2032(\mathrm{~m}), 1984(\mathrm{vs}), 1968(\mathrm{~m}), 1956(\mathrm{~m}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 7.60$ (br, 2H, NCH), 7.50 (br, 2H, NCH), $4.06\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.41\left(\mathrm{br}, 6 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) .{ }^{13} \mathrm{C}$ NMR
($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 300 \mathrm{~K}, \mathrm{ppm}$): $\delta 218.94$ (Fe-CO), 175.58 ($C_{\text {carbene }}$), 123.75, 120.71 $(\mathrm{NCH}), 46.13\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 36.63\left(\mathrm{NCH}_{3}\right), 29.65\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9}$ Te: C, $27.34 ; \mathrm{H}, 1.84 ; \mathrm{N}, 6.38$. Found: C, $27.68 ; \mathrm{H}, 1.91 ; \mathrm{N}, 6.38 . \mathrm{Mp}: 166$ ${ }^{\circ} \mathrm{C}$ dec. Crystals of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe}\right)\right]$ (4) suitable for X-ray diffraction were grown from hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Method 2. Freshly dried THF (10 mL) was added to a mixture of $\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe} \cdot \mathrm{H}_{2} \mathrm{I}_{2}$ $(0.184 \mathrm{~g}, 0.40 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(0.090 \mathrm{~g}, 0.80 \mathrm{mmol})$, and the mixture was stirred in an ice-water bath for 2 h . The resultant solution was filtered, and the pale yellow filtrate was then transferred to a THF solution $(10 \mathrm{~mL})$ of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right](0.30 \mathrm{~g}, 0.40 \mathrm{mmol})$, which was stirred for another 30 min . The resultant solution was filtered, and the solvent was removed under vacuum. The residue was washed with deionized water and hexanes several times and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a purplish-brown solution, which was recrystallized with hexanes $/ \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\operatorname{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe}\right)\right]$ (4) (yield $0.17 \mathrm{~g}, 0.19 \mathrm{mmol}, 48 \%$ based on $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$).

The General Procedure for the Homocoupling of 2-, 3-, or 4-Bromophenylboronic

Acids Leading to Biaryls. A solution of catalyst 1 (0.0050 mmol) and 2-, 3-, or 4-bromophenylboronic acids (1.00 mmol) in $\mathrm{MeOH}\left(3 \mathrm{~mL}\right.$) was stirred at $25{ }^{\circ} \mathrm{C}$. The resultant reaction mixture was evaporated under vacuum. The residue was purified by flash chromatography on silica gel eluted with n-hexane to afford biaryls. To compare the
productivities of the catalysts, all the homocoupling reactions mentioned herein were carried out repeatedly and carefully to ensure accuracy.

The General Procedure for the Homocoupling of 3-Nitro- or 4-Methoxyphenylboronic Acids Leading to Biaryls. A solution of catalyst $\mathbf{1}(0.0050 \mathrm{mmol})$ and 3-nitro- or 4-methoxyphenylboronic acids (1.00 mmol) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$. The resultant reaction mixture was evaporated under vacuum. The residue was purified by flash chromatography on a silica gel column (petroleum ether/ethyl acetate, 5: 1) to afford biaryls. To compare the productivities of the catalysts, all the homocoupling reactions mentioned herein were carried out repeatedly and carefully to ensure accuracy.

The General Procedure for the Homocoupling of 4-Nitrophenylboronic Acids

Leading to Biaryls. A solution of catalyst $1(0.0050 \mathrm{mmol})$ and 4-nitrophenylboronic acid (1.00 mmol) in $\mathrm{MeOH}\left(3 \mathrm{~mL}\right.$) was stirred at $25{ }^{\circ} \mathrm{C}$. The resultant reaction mixture was evaporated under vacuum. The residue was purified by flash chromatography on a silica gel column (petroleum ether/ethyl acetate, 5: 1) to afford 4,4'-dinitrobiphenyl ($0.39 \mathrm{mmol}, 78 \%$) and 4-nitrophenol ($0.21 \mathrm{mmol}, 21 \%$). To compare the productivities of the catalysts, the homocoupling reaction mentioned herein was carried out repeatedly and carefully to ensure accuracy.

Optimization of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ - and $\mathbf{1} \mathbf{- 4}$-Catalyzed Homocoupling of 4-Bromophenylboronic Acid under Different Reaction Conditions. In order to explore the behavior of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$ in catalyzing Suzuki homocoupling reactions, complex 1 was chosen as the model catalyst and 4-bromophenylboronic acid was chosen as the model substrate to optimize catalytic conditions (Table S1). We found that complex $\mathbf{1}$ (2.0 $\mathrm{mol} \%$ of Cu loading) exhibited good catalytic performances in the homocoupling of 4-bromophenylboronic acid in MeOH at room temperature in air, without any additives such as a base or a ligand, affording the 4,4'-dibromobiphenyl product in an 84% yield (Table S1, Entry 1), which indicated that a catalytic cycle was operating under the current conditions. In the absence of catalyst $\mathbf{1}$ or under N_{2}, this homocoupling reaction did not occur (Entries 2-4). Moreover, when $3 \mathrm{~mol} \%$ of Fe loading of catalyst $\left[\mathrm{Et}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9}\right]$ was used, no biaryl products were observed, indicating that Cu was essential for the catalytic performance (Entry 5). We next examined the effect of the polar protic or aprotic solvents (Entries 6-9); however, the protic methanol was still the best choice (Entry 1). The reaction temperature had great influence on this reaction. When the temperature was increased to the refluxing MeOH temperature, the product was formed in a lower yield (27\%) (Entry 10), indicating the thermal instability of catalyst $\mathbf{1}$. Notably, when O_{2} was introduced into the system, the time required for the completion of the reaction reduced to 1 h and the yield maintained at a good yield (85%) (Entry 11), suggesting that sufficient O_{2} was necessary. On the other hand, the
influence of the amount of complex 1 on the reaction was also examined. The results showed that a Cu loading ($1.0 \mathrm{~mol} \%$) of catalyst $\mathbf{1}$ gave the best reaction condition with 88% yield (Entry 12), however, the lower Cu loading ($0.5 \mathrm{~mol} \%$) required the longer reaction time (12 h) for completion of the reaction (Entry 13). Other catalysts like 2-4 and $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ were also used to catalyze the homocoupling of 4-bromophenylboronic acid under conditions that included $1.0 \mathrm{~mol} \%$ of Cu loading, methanol as the solvent, room temperature, an atmosphere of O_{2}, and without any additives such as bases, ligands, or other oxidants (Entries 14-17).

Electrochemical Measurements. The electrochemical measurements were performed at room temperature under a nitrogen atmosphere and recorded using a CHI 621D electrochemical potentiostat. A glassy carbon working electrode, a platinum wire auxiliary electrode, and a non-aqueous $\mathrm{Ag} / \mathrm{Ag}^{+}$electrode were used in a three-electrode configuration. Tetra- n-butylammonium perchlorate (TBAP) was used as the supporting electrolyte, and the solute concentration was $\sim 10^{-3} \mathrm{M}$. The redox potentials were calibrated with a ferrocenium $/$ ferrocene $\left(\mathrm{Fc}^{+} / \mathrm{Fc}\right)$ couple in the working solution and were referenced to SCE.

To explore the effect of the incorporation of the mono- or bidentate NHC ligands into the $\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}$ cluster core, the electrochemical behaviors of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and 1-4 were investigated by differential pulse voltammetry (DPV). For comparison, the DPVs of $\left[\mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$ were performed as well.

Because of the irreversible desorption of $\mathrm{Cu}(-0.198$ to $-0.489 \mathrm{~V}),{ }^{7}$ the DPV profiles were only disscussed between 1.004 and -0.20 V . The DPV data are summarized in Table S4.

For the DPV analysis, the measurement of the peak width at the half height ($W_{1 / 2}$) determined the electron stoichiometry. ${ }^{8 a}\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$ exhibited similar redox behaviors and each showed two one-electron quasi-reversible oxidations (0.015 ~ 0.134 V and $0.232 \sim 0.286 \mathrm{~V})$ and a one-electron quasi-reversible reduction $(-0.085 \sim-0.143$ V) (Table S4). The widths of the DPV peaks at the half-height ($W_{1 / 2}$) of these complexes were a bit greater or lower than the value $\left(W_{1 / 2}=90 \mathrm{mV}\right)$ expected for the one-electeron reversible redox couples, indicating that these DPV responses were quasi-reversible. ${ }^{8}$

X-ray Structural Characterization of 1-4. Selected crystallographical data for 1-4 are given in Table S5. All crystals were mounted on glass fibers with epoxy cement. Data collections for 1, 2, and 4 were carried out on a Bruker Apex II CCD diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation at 200(2) K in the 2θ range of $2.0-50.0^{\circ}$. Data collection for $\mathbf{3}$ were carried out on a Bruker-Nonius Kappa CCD diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation at 200(2) K employing the $\theta-2 \theta$ scan mode. An empirical absorption correction by the multi-scan method was applied to the data using SADABS. ${ }^{9}$ The structures of $\mathbf{1 - 4}$ were solved by direct methods and refined with SHELXL-97. ${ }^{10}$ Each of $\mathbf{3}$ and 4 contained two independent but chemically similar asymmetric structures in the unit cell where their bond distances and angles were similar and
only one structure was described for further comparison. For complex 4, in order to obtain reasonable thermal parameters, the N7 and C36 atoms were restrained by using SIMU and DELU commands and the C34 and C35 atoms were restrained by using DELU command during the least-squares refinement. The non-hydrogen atoms for all structures were refined with anisotropic temperature factors. The selected distances and angles for $\mathbf{1 - 4}$ are listed in Table S6. These $\mathrm{Cu}-\mathrm{C}$ distances are within the van der Waals interaction (2.245(5)-2.863(6) $\AA, \mathbf{1} ; 2.268(5)-2.803(5) \AA, \mathbf{2} ; 2.307(6)-2.597(6) \AA, \mathbf{3} ; 2.296(4)-2.787(5) \AA, \mathbf{4})$, and the corresponding $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ angles are slightly bent from $180^{\circ}\left(166.3(5)-174.2(6)^{\circ}, \mathbf{1}\right.$; $\left.160.2(5)-179.3(4)^{\mathrm{o}}, \mathbf{2} ; 167.3(5)-174.8(6)^{\mathrm{o}}, \mathbf{3} ; 166.0(4)-173.3(4)^{\mathrm{o}}, \mathbf{4}\right)$ (Fig. 1 and S2-S4).

Explanation for the Checkcif Alert for 4:

Alert level B
PLAT029 ALERT 3 B diffrn measured fraction theta full Low 0.955 Note

Explanation: The crystal selected for data collection was of poor quality which resulted in very weak diffraction intensity at high theta angles.

Computational Details. All calculations reported in the present study were performed via density functional theory (DFT) using the Gaussian 03 series of packages. ${ }^{11}$ Attempts at optimization of clusters $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1}$ led to the elongation of the $\mathrm{Cu}-\mathrm{Fe}$ and $\mathrm{Cu}-\mathrm{Cu}$ bonds, respectively, by more than $0.2 \AA$. Thus, to precisely calculate the natural charges ${ }^{12}$ and Wiberg bond indices, ${ }^{13}$ the single-point calculations of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1} \mathbf{- 4}$ with a PBE1PBE $(\mathrm{PBE} 0)^{14}$ hybrid functional and the large basis set Def2-TZVP ${ }^{15}$ were carried out by using the Weinhold NBO method ${ }^{16}$ based on their single-crystal diffraction data. Graphical representations of the molecular orbitals were obtained using GaussView 5.0 software. For orbital contributions, the molecular orbital compositions were analyzed using the AOMix program. ${ }^{17}$

References

(1) D. F. Shriver and M. A. Drezdon, The Manipulation of Air-Sensitive Compounds, Wiley-VCH Publisher, New York, 1986.
(2) R. E. Bachman and K. H. Whitmire, Inorg. Chem., 1994, 33, 2527-2533.
(3) G. J. Kubas, Inorg. Synth., 1979, 19, 90-92.
(4) M. Shieh, C.-H. Ho, W.-S. Sheu, B.-G. Chen, Y.-Y. Chu, C.-Y. Miu, H.-L. Liu and C.-C. Shen, J. Am. Chem. Soc., 2008, 130, 14114-14116.
(5) C. Tubaro, A. Biffis, R. Gava, E. Scattolin, A. Volpe, M. Basato, M. M. Díaz-Requejo and P. J. Perez, Eur. J. Org. Chem., 2012, 1367-1372.
(6) (a) W. A. Herrmann, C. Köcher, L. J. Gooßen and G. R. J. Artus, Chem.-Eur. J., 1996, 2, 1627-1636; (b) Q. Liu, F. van Rantwijk and R. A. Sheldon, J. Chem. Technol. Biotechnol., 2006, 81, 401-405; (c) F. M. Nachtigall, Y. E. Corilo, C. C. Cassol, G. Ebeling, N. H. Morgon, J. Dupont and M. N. Eberlin, Angew. Chem., Int. Ed., 2008, 47, 151-154.
(7) (a) X. Xue, X.-S. Wang, R.-G. Xiong, X.-Z. You, B. F. Abrahams, C.-M. Che and H.-X. Ju, Angew. Chem., Int. Ed., 2002, 41, 2944-2946; (b) M. Scheer, A. Schindler, R. Merkle, B. P. Johnson, M. Linseis, R. Winter, C. E. Anson and A. V. Virovets, J. Am. Chem. Soc., 2007, 129, 13386-13387; (c) M. S. Doescher, J. M. Tour, A. M. Rawlett and M. L. Myrick, J. Phys. Chem. B, 2001, 105, 105-110; (d) H. Hagenström, M. A.

Schneeweiss and D. M. Kolb, Langmuir, 1999, 15, 7802-7809.
(8) (a) A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, 2001, pp 291; (b) T. Nakanishi, H. Murakami, T. Sagara and N. Nakashima, J. Phys. Chem. B, 1999, 103, 304.
(9) G. M. Sheldrick, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
(10) G. M. Sheldrick, SHELXL97, version 97-2; University of Göttingen, Germany, 1997.
(11) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A.

Pople, GAUSSIAN 03 (Revision E.01), Gaussian, Inc., Wallingford, CT, 2004.
(12) (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066-4073; (b) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735-746.
(13) K. B. Wiberg, Tetrahedron, 1968, 24, 1083-1096.
(14) C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
(15) F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
(16) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899-926.
(17) S. I. Gorelsky, AOMIX program, http://www.sg-chem.net/.
(18) R. B. N. Baig and R. S. Varma, Green Chem., 2013, 15, 398-417.
(19) A. S. Demir, Ö. Reis and M. Emrullahoglu, J. Org. Chem., 2003, 68, 10130-10134.
(20) R. Luque, B. Baruwati and R. S. Varma, Green Chem., 2010, 12, 1540-1543.
(21) N. Hussain, P. Gogoi, V. K. Azhaganand, M. V. Shelke and M. R. Das, Catal. Sci. Technol., 2015, 5, 1251-1260.
(22) C. González-Arellano, A. Corma, M. Iglesias and F. Sánchez, Chem. Commun., 2005, 1990-1992.
(23) X. Zhang, H. Zhao and J. Wang, J. Nanosci. Nanotechnol., 2010, 10, 5153-5160.
(24) A. Prastaro, P. Ceci, E. Chiancone, A. Boffi, G. Fabrizi and S. Cacchi, Tetrahedron Lett., 2010, 51, 2550-2552.
(25) M. S. Wong and X. L. Zhang, Tetrahedron Lett., 2001, 42, 4087-4089.
(26) G. W. Kabalka and L. Wang, Tetrahedron Lett., 2002, 43, 3067-3068.
(27) A. L., II. Miller and N. B. Bowden, J. Org. Chem., 2009, 74, 4834-4840.
(28) P. Puthiaraj, P. Suresh and K. Pitchumani, Green Chem., 2014, 16, 2865-2875.
(29) N. Kirai and Y. Yamamoto, Eur. J. Org. Chem., 2009, 1864-1867.
(30) A. R. Kapdi, G. Dhangar, J. L. Serrano, J. A. De Haro, P. Lozano and I. J. S. Fairlamb, RSC Adv., 2014, 4, 55305-55312
(31) G. Cheng and M. Luo, Eur. J. Org. Chem., 2011, 2519-2523.

Table S1 $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ - and $\mathbf{1}-\mathbf{4}$-catalyzed homocoupling of 4-bromophenylboronic acid: the optimization of the reaction conditions. ${ }^{a}$

	2						$\begin{gathered} \text { Yield } \\ (\%)^{b, c} \end{gathered}$
Entry	Catalyst	Solvent	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{~mol} \%) \end{gathered}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Oxidant	
1	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right](\mathbf{1})$	MeOH	2.0	25	2	Air	84
2	-	MeOH	0	25	20	Air	0
3	-	MeOH	0	25	20	$\mathrm{O}_{2}{ }^{\text {e }}$	0
4	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right](\mathbf{1})$	MeOH	2.0	25	8	${ }_{-}^{f}$	0
5	$\left[\mathrm{Et}_{4} \mathrm{~N}_{2}\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9}\right]\right.$	MeOH	0^{d}	25	12	$\mathrm{O}_{2}{ }^{e}$	0
6	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	EtOH	2.0	25	24	Air	26
7	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	i PrOH	2.0	25	24	Air	Trace ${ }^{\text {g }}$
8	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	THF	2.0	25	24	Air	Trace ${ }^{\text {g }}$
9	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	DMF	2.0	25	24	Air	60
10	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	MeOH	2.0	64	8	Air	27
11	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	MeOH	2.0	25	1	$\mathrm{O}_{2}{ }^{\text {e }}$	85
12	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	MeOH	1.0	25	2	$\mathrm{O}_{2}{ }^{\text {e }}$	88
13	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1)	MeOH	0.5	25	12	$\mathrm{O}_{2}{ }^{\text {e }}$	82
14	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH}_{2} \mathrm{ImMe}\right)\right]$ (2)	MeOH	1.0	25	2	$\mathrm{O}_{2}{ }^{\text {e }}$	87
15	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ImMe}\right)\right]$ (3)	MeOH	1.0	25	2	$\mathrm{O}_{2}{ }^{\text {e }}$	88
16	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{ImMe}\right)\right]$ (4)	MeOH	1.0	25	2	$\mathrm{O}_{2}{ }^{\text {e }}$	88
17	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$	MeOH	1.0	25	3	$\mathrm{O}_{2}{ }^{\text {e }}$	85
18	$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$	MeOH	0.5	25	17	$\mathrm{O}_{2}{ }^{\text {e }}$	78

${ }^{a}$ Reaction conditions: 4-bromophenylboronic acid (1.0 mmol), solvent $(3.0 \mathrm{~mL}) .{ }^{b}$ Isolated yield as an average of three runs. ${ }^{c}$ All reactions were monitored by TLC. ${ }^{d} 3.0 \mathrm{~mol} \%$ of Fe loading. ${ }^{e} \mathrm{O}_{2}(1 \mathrm{~atm}$, balloon $) .{ }^{f} \mathrm{~N}_{2}$ atmosphere. ${ }^{g}$ Detected by ${ }^{1} \mathrm{H}$ NMR.

Table S2 The reported catalytic systems for homocoupling of 4-bromophenylboronic acid, in which higher temperature (Entries 1-8), additional base (Entries 1, 3, 5, 6, and 8-10), external additives (Entries 7-10), longer reaction time (Entries 5-14), and higher loading of the catalyst (Entries 2 and 8-14) are required compared to our system.

Entry	Catalyst	Additive	Base	Solvent	Oxidant	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Yield (\%)	Reference
1	Nano-FGT ${ }^{a}$	-	$\begin{gathered} 0.1 \mathrm{~N} \\ \mathrm{NaOH} \end{gathered}$	$\mathrm{H}_{2} \mathrm{O}$	-	$120-130$ (Microwave irradiation)	0.75-1	> 99	18
2	$\mathrm{Cu}(\mathrm{OAc})_{2}(50.0 \mathrm{~mol} \%)$	-	-	DMF	O_{2}	100	1	93	19
3	Nano-ferrite glutathione	-	$\begin{aligned} & 0.1 \mathrm{M} \\ & \mathrm{NaOH} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}$	-	120-130 (Microwave irradiation)	0.75	> 99	20
4	$\begin{gathered} \text { CuNP-rGO } \\ \left(25 \mathrm{mg} \mathrm{~mL}^{-1}\right) \end{gathered}$	-	-	DMF	-	Microwave irradiation (360 W)	0.25	92	21
5	Au-(MCM-41)	-	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & (2 \text { eq. }) \end{aligned}$	Xylene	-	130	24	95	22
6	Au(I) PS-co-PMAA	-	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1-methyl-pyrrolidin-2-one $/ \mathrm{H}_{2} \mathrm{O}$	-	110	43	99	23
7	$\begin{aligned} & \mathrm{Pd}_{\mathrm{np}} / \mathrm{Te}-\mathrm{Dps} \\ & (0.05 \mathrm{~mol} \%) \end{aligned}$	$\begin{gathered} 1 \mathrm{M} \text { Tris- } \mathrm{HCl} \\ \text { Buffer at PH } 8.9 \end{gathered}$	-	$\mathrm{H}_{2} \mathrm{O}$	Air	100	24	78	24
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(5.0 \mathrm{~mol} \%)$	PPh_{3}	$\begin{aligned} & \mathrm{K}_{2} \mathrm{CO}_{3} \\ & (2 \mathrm{eq} .) \end{aligned}$	DMF	Air	90	4	12	25
9	$\mathrm{PdCl}_{2}(3.0 \mathrm{~mol} \%)$	p-Toluenesulfonyl chloride	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ (2 \mathrm{eq} .) \end{gathered}$	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	$-^{b}$	r.t.	12	96	26
10	$\mathrm{PdCl}_{2}(3.0 \mathrm{~mol} \%)$	p-Toluenesulfonyl chloride	$\begin{gathered} \mathrm{Na}_{2} \mathrm{CO}_{3} \\ \text { (2 eq.) } \end{gathered}$	$\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$	Air	-	12	93	27
11	$\begin{gathered} \mathrm{Cu}(\mathrm{BDC}) \mathrm{MOF} \\ (19.4 \mathrm{~mol} \%) \end{gathered}$	-	-	DMF	Air	r.t.	16	93	28
12	$\begin{aligned} & {\left[\{(\text { phen }) \mathrm{Cu}(\mu-\mathrm{OH})\}_{2} \mathrm{Cl}_{2}\right]} \\ & \cdot 3 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mol} \%) \end{aligned}$	-	-	IPA	Air	28	12	92	29
13	$\begin{gathered} {\left[\mathrm{Pd}(\mathrm{Phbz})(\mathrm{OAc})\left(\mathrm{PPh}_{3}\right)\right]} \\ (5.0 \mathrm{~mol} \%) \end{gathered}$	-	-	THF	Air	20	24	82	30
14	$\mathrm{CuCl}(2.0 \mathrm{~mol} \%)$	-	-	MeOH	Air	25	4	74	31

${ }^{a}$ Glutathione-functionalized nano- $\mathrm{Fe}_{3} \mathrm{O}_{4} \cdot{ }^{b}$ Under N_{2}.

Table S3 Results of natural bond order of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$ at the level of PBE0/Def2-TZVP.

Complex	Wiberg bond index					
	$\mathrm{Te}-\mathrm{Fe}$	$\mathrm{Fe}-\mathrm{Fe}$	$\mathrm{Cu}-\mathrm{Fe}$	$\mathrm{Cu}-\mathrm{X}^{a}$	$\mathrm{Cu}-\mathrm{Cu}$	$\mathrm{Te}-\mathrm{Cu}$
$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$	0.616	0.160	0.079	0.200	0.028	
$\mathbf{1}$	0.625	0.157	0.065	0.363	0.035	0.174
$\mathbf{2}$	0.628	0.161	0.078	0.336	0.030	
$\mathbf{3}$	0.626	0.158	0.066	0.366	0.034	0.208
$\mathbf{4}$	0.626	0.159	0.068	0.354	0.029	0.182
${ }^{a} \mathrm{X}=\mathrm{N}$ or C atom.						

Table S4 Differential pulse voltammetry of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$.

Complex	Oxidation process		Reduction process	
	$\begin{gathered} E_{\mathrm{p}}^{\text {red }} / \mathrm{V}^{a} \\ \left(W_{1 / 2} / \mathrm{mV}^{c}\right) \end{gathered}$	$\begin{gathered} E_{\mathrm{p}}{ }_{\mathrm{ox}} / \mathrm{V}^{b} \\ \left(W_{1 / 2} / \mathrm{mV}^{c}\right) \end{gathered}$	$\begin{gathered} E_{\mathrm{p}}^{\mathrm{red}} / \mathrm{V}^{a} \\ \left(W_{1 / 2} / \mathrm{mV}^{c}\right) \end{gathered}$	$\begin{gathered} E_{\mathrm{p}}^{\mathrm{ox}} / \mathrm{V}^{b} \\ \left(W_{1 / 2} / \mathrm{mV}^{c}\right) \end{gathered}$
$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$	0.054 (109)	$-^{d}(\mathrm{br})$	-0.124 (105)	$-^{d}(\mathrm{br})$
	0.232 (118)	0.220 (95)	-0.464 (84)	$-0.198(98){ }^{e}$
1	0.015 (113)	$-^{d}(\mathrm{br})$	-0.085 (113)	$-^{d}(\mathrm{br})$
	0.277 (117)	0.263 (111)	-0.449 (97)	$-0.337(134){ }^{e}$
2	0.134 (108)	$-^{d}(\mathrm{br})$	-0.130 (105)	-0.174 (83)
	0.286 (101)	0.274 (119)	-0.430 (111)	$-0.398(72)^{e}$
3	0.097 (111)	0.083 (89)	-0.143 (99)	-0.193 (120)
	0.265 (82)	0.255 (82)	-0.475 (115)	$-0.489(170)^{e}$
4	0.060 (101)	$-^{d}(\mathrm{br})$	-0.140 (103)	-0.148 (96)
	0.242 (97)	0.232 (85)	-0.496 (104)	$-0.380(124){ }^{e}$
$\left[\mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ImMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$	0.399 (125)	0.363 (br)	-0.529 (50)	
	0.517 (128)	$-^{d}(\mathrm{br})$		$-0.317(166){ }^{e}$
$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$	1.004 (119)	1.016 (132)	-0.600 (48)	
				$-0.280(106){ }^{e}$
${ }^{\text {a }} E_{\mathrm{p}}^{\text {red }}=$ reductive peak potential. ${ }^{b} E_{\mathrm{p}}{ }^{\text {ox }}=$ oxidative peak potential. ${ }^{c} W_{1 / 2}=$ width at half-height. ${ }^{d}$ Difficult to determine due to the Cu desorption. ${ }^{e} \mathrm{The} \mathrm{Cu}$ desorption peak.				

Table S5 Crystallographic data for $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right] \quad$ (1), $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH} \mathrm{H}_{2} \operatorname{ImMe}\right)\right]$ (2), $\quad\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ImMe}\right)\right] \quad$ (3), and $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{ImMe}\right)\right]$ (4).

	1	2	3	4
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Te}$	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Te}$	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Te}$	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{Fe}_{3} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Te}$
Fw	866.59	850.55	864.57	878.60
Crystal system	Monoclinic	Orthorhombic	Triclinic	Triclinic
Space group	C2/c	Pnma	$P_{\overline{1}}$	P_{1}
Crystal dimens, mm	$0.44 \times 0.32 \times 0.20$	$0.38 \times 0.21 \times 0.10$	$0.27 \times 0.17 \times 0.03$	$0.38 \times 0.24 \times 0.12$
a, \AA	32.1115(6)	16.6462(5)	9.9886(1)	10.1041(4)
b, Å	8.6471(2)	16.1627(5)	13.5547(2)	13.6572(5)
c, \AA	21.3640(5)	9.3673(3)	20.5089(3)	20.2351(8)
α, deg			75.7093(7)	76.356(2)
β, deg	116.247(1)		81.2285(6)	82.953(2)
γ, deg			77.5563(7)	79.062(2)
V, \AA^{3}	5320.5(2)	2520.3(1)	2613.10(6)	2655.3(2)
Z	8	4	4	4
D (calcd), $\mathrm{g} \mathrm{cm}^{-3}$	2.164	2.242	2.198	2.198
μ, mm^{-1}	4.299	4.535	4.376	4.308
Color, habit	black, prism	black, prism	black, prism	black, prism
Diffractometer	Apex II CCD	Apex II CCD	Nonius (Kappa CCD)	Apex II CCD
Radiation (λ), \AA ¢	0.71073	0.71073	0.71073	0.71073
Temperature, K	200(2)	200(2)	200(2)	200(2)
θ range for collection, deg	$1.96-25.02$	$2.45-25.02$	$2.06-25.02$	$1.56-25.07$
$T_{\text {min }} / T_{\text {max }}$	0.25/0.48	0.28/0.66	0.42/0.64	0.29/0.63
No. of indep. reflns $(I>2 \sigma(I))$	$4123\left(R_{\text {int }}=0.027\right)$	$1998\left(R_{\text {int }}=0.026\right)$	$7628\left(R_{\text {int }}=0.054\right)$	$7888\left(R_{\text {int }}=0.024\right)$
No. of parameters	337	175	685	703
Goodness of fit	1.192	1.333	1.094	1.042
$R_{1}{ }^{a} / \mathrm{w} R_{2}{ }^{a}(I>2 \sigma(I))$	0.032/0.096	0.020/0.066	0.035/0.098	0.030/0.074
$R_{1}{ }^{a} / \mathrm{w} R_{2}{ }^{a}$ (all data)	0.042/0.117	0.034/0.101	0.051/0.116	0.036/0.077
${ }^{a}$ The functions minimized during least-squares cycles were $R_{1}=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\| / \Sigma\right\| F_{\mathrm{o}} \mid$ and $\mathrm{w} R_{2}=$ $\left\{\Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.				

Table S6 Selected bond distances (\AA) and bond angles (deg) for $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1), $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH}_{2} \operatorname{ImMe}\right)\right]$ (2), $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{ImMe}\right)\right]$ (3), and $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe}\right)\right]$ (4).

1			
$\mathrm{Te}(1)-\mathrm{Fe}(1)$	2.5073(8)	$\mathrm{Fe}(2)-\mathrm{Cu}(1)$	2.5418(8)
$\mathrm{Te}(1)-\mathrm{Fe}(2)$	2.5118(8)	$\mathrm{Fe}(2)-\mathrm{Cu}(2)$	2.6348(9)
$\mathrm{Te}(1)-\mathrm{Fe}(3)$	2.4984(8)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.7492(9)
$\mathrm{Te}(1)-\mathrm{Cu}(2)$	2.7818(7)	$\mathrm{Fe}(1)-\mathrm{Fe}(3)$	2.6409(9)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.5949(9)	$\mathrm{Fe}(2)-\mathrm{Fe}(3)$	2.6498(9)
$\mathrm{Fe}(1)-\mathrm{Cu}(1)$	2.5434(8)	$\mathrm{Cu}(2)-\mathrm{C}(15)$	$1.936(5)$
$\mathrm{Fe}(1)-\mathrm{Cu}(2)$	2.5004(9)	$\mathrm{Cu}(1)-\mathrm{C}(10)$	1.929(5)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	56.87(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	58.54(2)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	57.99(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	62.61(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	56.71(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	58.85(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	57.82(2)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	58.23(2)
$\mathrm{Te}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	100.67(2)	$\mathrm{Fe}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	59.86(2)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	58.32(2)	$\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	61.71(2)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	58.32(2)	$\mathrm{Fe}(2)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	58.15(2)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$	110.13(3)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$	65.45(3)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$	110.04(3)	$\mathrm{Fe}(1)-\mathrm{Cu}(2)-\mathrm{Fe}(2)$	64.68(3)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	67.49(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	61.92(3)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	65.39(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	60.14(2)
$\mathrm{Te}(1)-\mathrm{Cu}(2)-\mathrm{Fe}(1)$	56.37(2)	$\mathrm{Fe}(3)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$	103.17(3)
$\mathrm{Te}(1)-\mathrm{Cu}(2)-\mathrm{Fe}(2)$	55.18(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$	57.25(2)
$\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	58.15(2)	$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$	102.96(3)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Cu}(2)$	56.14(2)	$\mathrm{Fe}(3)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	108.47(3)
$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Cu}(2)$	59.44(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	55.30(2)
$\mathrm{Fe}(3)-\mathrm{Te}(1)-\mathrm{Cu}(2)$	108.48(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$	57.30(2)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(2)$	66.43(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	60.03(3)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(3)$	63.69(2)	$\mathrm{Fe}(3)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	113.00(3)
$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Fe}(3)$	63.86(2)		
$\mathrm{Te}(1)-\mathrm{Fe}(1)$	2.4651(6)	$\mathrm{Te}(1)-\mathrm{Fe}(2)$	2.4762(7)
$\mathrm{Fe}(1)-\mathrm{Cu}(1)$	2.4660(7)	$\mathrm{Fe}(2)-\mathrm{Cu}(1)$	2.5292(8)
$\mathrm{Fe}(1)-\mathrm{Fe}(1 \mathrm{a})$	2.668(1)	$\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{a})$	2.548(1)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.7391(8)	$\mathrm{Cu}(1)-\mathrm{C}(9)$	1.939(4)

$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$	114.31(2)	$\mathrm{Cu}(1 \mathrm{a})-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	85.77(3)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(1 \mathrm{a})$	57.24(1)	$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1 \mathrm{a})$	56.14(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(1 \mathrm{a})$	88.62(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1 \mathrm{a})$	85.77(3)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	56.53(2)	$\mathrm{Cu}(1 \mathrm{a})-\mathrm{Fe}(2)-\mathrm{Fe}(1 \mathrm{a})$	55.65(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	57.86(2)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1 \mathrm{a})$	58.28(3)
$\mathrm{Fe}(1 \mathrm{a})-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	60.86(1)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$	66.49(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$	111.71(3)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{a})$	91.39(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1 \mathrm{a})$	111.71(3)	$\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{a})$	59.75(1)
$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1 \mathrm{a})$	60.50(3)	$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(1 \mathrm{a})$	65.51(3)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	56.14(2)	$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(2)$	67.33(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	55.65(2)	$\mathrm{Fe}(1 \mathrm{a})-\mathrm{Te}(1)-\mathrm{Fe}(2)$	67.33(2)
3			
$\mathrm{Te}(1)-\mathrm{Fe}(1)$	2.4853(9)	$\mathrm{Fe}(3)-\mathrm{Cu}(2)$	2.521(1)
$\mathrm{Te}(1)-\mathrm{Fe}(3)$	2.5124(8)	$\mathrm{Fe}(2)-\mathrm{Cu}(2)$	2.588(1)
$\mathrm{Te}(1)-\mathrm{Fe}(2)$	2.5263(8)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.644(1)
$\mathrm{Te}(1)-\mathrm{Cu}(1)$	2.6755(8)	$\mathrm{Fe}(1)-\mathrm{Fe}(3)$	2.660 (1)
$\mathrm{Fe}(3)-\mathrm{Cu}(1)$	2.537(1)	$\mathrm{Fe}(2)-\mathrm{Fe}$ (3)	2.751(1)
$\mathrm{Fe}(2)-\mathrm{Cu}(1)$	2.571(1)	$\mathrm{Cu}(1)-\mathrm{C}(19)$	1.928(5)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.620(1)	$\mathrm{Cu}(2)-\mathrm{C}(28)$	1.939(6)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(3)$	64.31(3)	$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	58.34(2)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Fe}(2)$	63.67(3)	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}$ (3)	62.49(3)
$\mathrm{Fe}(3)-\mathrm{Te}(1)-\mathrm{Fe}(2)$	66.19(3)	$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(1)$	63.31(2)
$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	110.25(3)	$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	108.19(3)
$\mathrm{Fe}(3)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	58.45(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Cu}(2)$	61.03(3)
$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	59.16(2)	$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	57.41(3)
$\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Fe}(2)$	65.18(3)	$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	108.61(3)
$\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	58.50(3)	$\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	104.21(4)
$\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	59.81(3)	$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	56.67(2)
$\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	57.56(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	56.81(3)
$\mathrm{Fe}(2)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	57.53(2)	$\mathrm{Cu}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	56.24(3)
$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	102.95(3)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	59.04(3)
$\mathrm{Fe}(3)-\mathrm{Cu}(2)-\mathrm{Fe}(2)$	65.15(3)	$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(2)$	110.79(3)
$\mathrm{Fe}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	59.10(3)	$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$	63.99(3)
$\mathrm{Fe}(2)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	59.16(3)	$\mathrm{Fe}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	58.46(3)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	58.92(2)	$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	57.35(3)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	57.15(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	109.15(4)
$\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	58.01(3)	$\mathrm{Cu}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	58.61(3)

$\mathrm{Cu}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	105.65(4)		
	4		
$\mathrm{Te}(1)-\mathrm{Fe}(1)$	2.5151(6)	$\mathrm{Fe}(3)-\mathrm{Cu}(2)$	2.5325(8)
$\mathrm{Te}(1)-\mathrm{Fe}(2)$	2.4874(6)	$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.5817(7)
$\mathrm{Te}(1)-\mathrm{Fe}(3)$	2.4999(6)	$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.6350 (7)
$\mathrm{Te}(1)-\mathrm{Cu}(1)$	2.7929(5)	$\mathrm{Fe}(1)-\mathrm{Fe}(3)$	$2.7865(8)$
$\mathrm{Fe}(1)-\mathrm{Cu}(1)$	2.5165(7)	$\mathrm{Fe}(2)-\mathrm{Fe}$ (3)	2.6451(8)
$\mathrm{Fe}(1)-\mathrm{Cu}(2)$	2.5797(8)	$\mathrm{Cu}(1)-\mathrm{C}(19)$	1.925(4)
$\mathrm{Fe}(3)-\mathrm{Cu}(1)$	2.5550(7)	$\mathrm{Cu}(2)-\mathrm{C}(29)$	1.944(4)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(1)$	67.43(2)	$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	56.51(2)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	109.02(2)	$\mathrm{Cu}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	57.79(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Cu}(2)$	60.86(2)	$\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	56.01 (2)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	57.70(2)	$\mathrm{Fe}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(1)$	57.97(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	110.90(3)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Fe}(3)$	66.65(2)
$\mathrm{Cu}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	100.48(3)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	60.78(2)
$\mathrm{Te}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	55.99(2)	$\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Cu}(2)$	59.08(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	57.34(2)	$\mathrm{Fe}(1)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	56.26 (2)
$\mathrm{Cu}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	56.16(2)	$\mathrm{Fe}(3)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	55.52(2)
$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(3)$	58.33(2)	$\mathrm{Cu}(2)-\mathrm{Cu}(1)-\mathrm{Te}(1)$	100.97(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	58.73(2)	$\mathrm{Fe}(3)-\mathrm{Cu}(2)-\mathrm{Fe}(1)$	66.05(2)
$\mathrm{Te}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	58.20(2)	$\mathrm{Fe}(3)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	59.94(2)
$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(3)$	63.71(2)	$\mathrm{Fe}(1)-\mathrm{Cu}(2)-\mathrm{Cu}(1)$	58.36(2)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(2)$	111.04(2)	$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Fe}(3)$	64.06(2)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$	67.07(2)	$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Fe}(1)$	63.57(2)
$\mathrm{Cu}(2)-\mathrm{Fe}(3)-\mathrm{Cu}(1)$	60.99(2)	$\mathrm{Fe}(3)-\mathrm{Te}(1)-\mathrm{Fe}(1)$	67.51(2)
$\mathrm{Te}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	57.74 (2)	$\mathrm{Fe}(2)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	106.82(2)
$\mathrm{Cu}(2)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	101.45(3)	$\mathrm{Fe}(3)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	57.41(2)
$\mathrm{Cu}(1)-\mathrm{Fe}(3)-\mathrm{Fe}(2)$	109.37(3)	$\mathrm{Fe}(1)-\mathrm{Te}(1)-\mathrm{Cu}(1)$	56.31(2)

Table S7 Electronic energy and cartesian coordinates of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{Me}_{2} \mathrm{Im}\right)_{2}\right]$ (1) (PBE0/Def2-TZVP) (in gas).

atomic symbol	x	y	z
C	-0.702010	4.435960	5.669820
C	1.824220	4.593340	5.704310
C	0.316500	5.497830	3.539090
C	2.198720	9.139990	5.049000
C	1.619510	9.246340	7.513140
C	3.210100	7.274810	6.794590
C	0.312800	7.296420	9.329630
C	1.828060	5.380230	8.425220
C	-0.844930	5.120810	8.421380
C	4.304020	6.174030	3.429870
C	3.745060	3.919730	2.544620
H	4.098980	3.325680	1.852900
H	2.814050	4.143690	2.335760
H	3.784950	3.470080	3.414540
C	5.620130	5.392330	1.789660
H	5.966490	4.820760	1.113270
C	6.098720	6.589950	2.134570
H	6.853590	7.032690	1.762840
C	5.441640	8.347050	3.786270
H	6.216920	8.810530	3.399210
H	5.588050	8.214750	4.746250
H	4.636240	8.885760	3.648310
C	0.740910	8.748270	2.234210
C	2.278630	7.390680	0.829680
H	2.751770	7.513470	-0.019160
H	1.680050	6.619360	0.760700
H	2.930360	7.235030	1.546320
C	1.449650	9.683890	0.312330
H	1.899210	9.798890	-0.517350
C	0.646790	10.558970	0.902500
H	0.418290	11.424550	0.584420
C	-0.700020	10.593560	3.021730
H	-0.952310	11.484210	2.699820

H	-0.251370	10.673980	3.889740
H	-1.501880	10.040150	3.117540
N	4.535790	5.138110	2.592520
N	5.279310	7.055170	3.138620
N	1.508280	8.577920	1.128600
N	0.207520	9.970970	2.065590
O	-1.400000	3.530610	5.880600
O	2.599770	3.772730	5.976400
O	0.175050	5.119080	2.460310
O	2.647260	9.979620	4.412840
O	1.644680	10.087710	8.289170
O	4.237330	6.922870	7.191230
O	0.236240	7.922470	10.278110
O	2.740520	4.799140	8.841020
O	-1.640520	4.391860	8.800780
Fe	0.480530	5.673710	5.318410
Fe	1.653130	7.965970	6.281840
Fe	0.412820	6.265430	7.891380
Cu	2.801570	6.434050	4.609820
Cu	0.661910	7.693500	3.855830
Te	-0.833080	7.618700	6.200510

Table S8 Electronic energy and cartesian coordinates of $\left[\mathrm{TeFe}_{3}(\mathrm{CO}){ }_{9} \mathrm{Cu}_{2}\left(\mathrm{MeImCH}_{2} \mathrm{ImMe}\right)\right]$ (2) (PBE0/Def2-TZVP) (in gas).

$$
\mathrm{E}=-11257.0567454 \text { a.u. }
$$

atomic symbol	x	y	z
C	15.728990	2.597350	4.075710
C	18.194300	2.340360	4.758590
C	16.416480	1.121690	6.331360
C	15.459330	5.383800	8.758430
C	13.591620	4.040680	7.590320
C	11.988590	0.339420	6.513080
H	11.257820	-0.307090	6.603950
H	12.078480	0.850160	7.344900
H	12.824230	-0.137380	6.331360
C	10.535380	1.213820	4.670540
H	9.816260	0.601250	4.772640
C	10.613620	2.204590	3.785330
H	9.962750	2.434100	3.130550
C	12.501300	2.243380	5.029300
C	12.261590	4.040680	3.337570
H	13.250380	4.040680	3.292610
H	11.917020	4.040680	2.409270
N	11.699280	1.247760	5.414300
N	11.821470	2.838170	4.002650
O	15.317830	2.459960	3.010650
O	19.168770	2.091450	4.198420
O	16.258340	0.087280	6.813770
O	15.474970	6.238800	9.514370
O	12.507950	4.040680	7.970640
Fe	16.679490	2.706930	5.586280
Fe	15.393240	4.040680	7.603530
Te	14.220350	2.766570	5.760050
Cu	17.850400	4.040680	7.297130
N	14.220350	5.314780	5.760050
Fe	11.821470	5.243180	4.002650
C	16.679490	5.374420	5.586280
C	15.459330	2.697550	8.758430
	15.728990	5.484000	4.075710
Ce			

C	16.416480	6.959660	6.331360
C	12.501300	5.837970	5.029300
C	10.613620	5.876760	3.785330
C	18.194300	5.740990	4.758590
O	15.474970	1.842550	9.514370
O	15.317830	5.621390	3.010650
O	16.258340	7.994070	6.813770
N	11.699280	6.833590	5.414300
C	10.535380	6.867530	4.670540
H	9.962750	5.647250	3.130550
O	19.168770	5.989900	4.198420
C	11.988590	7.741930	6.513080
H	9.816260	7.480100	4.772640
H	11.257820	8.388440	6.603950
H	12.078480	7.231190	7.344900
H	12.824230	8.218730	6.331360

Table S9 Electronic energy and cartesian coordinates of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{2} \operatorname{ImMe}\right)\right]$ (3) (PBE0/Def2-TZVP) (in gas).
$\mathrm{E}=-11296.7983211$ a.u.

atomic symbol	x	y	z
Te	1.208800	9.157380	4.009490
Cu	2.834050	8.137230	5.873820
Cu	5.049800	7.701050	4.545840
Fe	2.369050	9.248390	1.813590
Fe	2.743630	7.224090	3.472230
Fe	3.649720	9.747070	4.091060
O	0.028320	8.483210	0.233220
O	2.346360	12.023240	0.923000
O	4.496500	8.311620	0.031620
O	4.978310	5.905530	2.110850
O	0.894340	5.781330	1.739280
O	2.208480	5.165990	5.488610
O	4.867110	10.204790	6.704130
O	3.156710	12.633820	3.986510
O	6.079980	9.775070	2.462660
N	1.801050	7.907540	8.645010
N	3.528350	6.701760	8.336680
N	6.850070	6.676680	6.654720
N	7.758410	6.486480	4.735580
C	0.955120	8.758410	0.843950
C	2.347870	10.942540	1.304460
C	3.662770	8.646860	0.755000
C	4.148170	6.493910	2.701810
C	1.620830	6.392930	2.397440
C	2.474210	6.056120	4.798830
C	4.319770	9.895410	5.727760
C	3.327110	11.501340	4.012200
C	5.118660	9.701780	3.089200
C	2.703830	7.579380	7.714100
C	0.717510	8.839790	8.425620
H	0.184660	8.920410	9.245850
H	0.148270	8.512920	7.698280
H	1.082780	9.715910	8.186470

C	2.040900	7.240120	9.842740
H	1.530940	7.303880	10.641220
C	3.141700	6.482620	9.643110
H	3.565080	5.914320	10.275580
C	4.679330	6.101670	7.688400
H	4.446150	5.879380	6.751560
H	4.911670	5.257790	8.150890
C	5.892600	7.028680	7.696310
H	5.591830	7.963040	7.561910
H	6.337190	6.976760	8.579780
C	8.083540	6.077890	6.850390
H	8.451880	5.805150	7.682470
C	8.653020	5.959150	5.670440
H	9.507850	5.585580	5.488610
C	8.037490	6.579790	3.300680
H	8.917440	6.190750	3.114890
H	8.030650	7.519750	3.027930
H	7.350040	6.089300	2.802610
C	6.639960	6.922250	5.336420

Table S10 Electronic energy and cartesian coordinates of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}\left(\mathrm{MeIm}\left(\mathrm{CH}_{2}\right)_{3} \operatorname{ImMe}\right)\right]$ (4) (PBE0/Def2-TZVP) (in gas).

atomic symbol	x	y	Z
C	9.144640	9.829650	5.803080
C	8.103300	11.401990	4.031390
C	9.907040	9.712710	3.174940
C	7.226340	10.711440	1.236660
C	5.886620	8.511310	0.872130
C	8.599730	8.396500	0.958360
C	6.344430	6.226400	2.665380
C	8.850070	6.283990	2.880960
C	7.232720	6.026960	5.077940
C	7.355670	7.698200	7.862870
C	4.888710	7.966590	7.815830
H	4.149120	7.831020	8.444940
H	4.747690	7.413240	7.020140
H	4.927270	8.911310	7.555170
C	6.237230	7.126580	9.744310
H	5.519400	6.983060	10.349900
C	7.514660	6.924410	9.973610
H	7.895120	6.599420	10.781070
C	9.626640	7.264330	8.729120
H	10.017020	6.927550	9.573810
H	9.949390	8.190190	8.588010
C	10.109900	6.336100	7.504220
H	9.906090	5.386770	7.696280
H	9.641300	6.596840	6.673250
C	11.525360	6.516470	7.351350
H	12.002920	5.964590	8.019660
H	11.756530	7.464660	7.514020
C	13.107580	5.409930	5.820720
H	13.575580	4.907720	6.477260
C	13.436040	5.546600	4.548780
H	14.179460	5.148520	4.111740
C	12.593920	6.886800	2.614420
H	13.359540	6.473590	2.163660

H	12.714020	7.858860	2.637940
H	11.771760	6.670420	2.126420
C	11.551130	6.743540	4.858440
N	6.148930	7.586790	8.456110
N	8.204980	7.267990	8.829460
N	11.957110	6.132300	6.004940
N	12.498760	6.376060	3.976510
O	9.743680	10.109030	6.764770
O	7.913820	12.531840	3.951030
O	10.860140	9.892270	2.544650
O	7.238120	11.755130	0.764920
O	5.001900	8.184100	0.230280
O	9.476400	8.000600	0.333170
O	5.617850	5.581950	2.049990
O	9.575360	5.627860	2.267340
O	7.012770	5.180340	5.807390
Fe	8.446490	9.673650	4.169750
Fe	7.236560	9.064290	1.889870
Fe	7.482700	7.119270	3.661370
Cu	7.677570	8.152260	6.012190
Cu	9.892100	7.669300	4.470980
Te	6.001700	9.113280	4.042280

Fig. S1 Powder X-ray diffraction (PXRD) patterns for (a) Crystals of $\mathbf{1}$ exposure to air for 10 days; (b) Calculated pattern for 1.

Fig. S2 ORTEP of 2 at 30% probability and hydrogen atoms are omitted for clarity. The atoms with an additional label (a) are at the equivalent position $(x, 1 / 2-y, z)$.

Fig. S3 ORTEP of $\mathbf{3}$ at 30% probability and hydrogen atoms are omitted for clarity.

Fig. S4 ORTEP of 4 at 30\% probability and hydrogen atoms are omitted for clarity.

Fig. S5 The proposed mechanism using the model complex 1 as the catalyst for the homocoupling of 4-bromophenylboronic acid to 4,4'-dibromobiphenyl. ${ }^{19,28}$
$\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$

Fig. S6 Spatial graphs (isovalue $=0.03$) of the selected frontier molecular orbitals and their associated energies of $\left[\mathrm{TeFe}_{3}(\mathrm{CO})_{9} \mathrm{Cu}_{2}(\mathrm{MeCN})_{2}\right]$ and $\mathbf{1 - 4}$.

ArX^{a}	Yield (\%)	Product ratio	$\mathrm{K}_{\mathrm{Ar}} / \mathrm{K}_{\mathrm{ArBr}}$	$\log \left(\mathrm{K}_{\mathrm{ArX}} / \mathrm{K}_{\mathrm{ArBr}}\right)$
$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	88	$88 / 88$	1	0
$p-\mathrm{OMeC}_{6} \mathrm{H}_{4}$	70	$70 / 88$	0.795	-0.100
$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	99^{b}	$99 / 88$	1.125	0.051
$m-\mathrm{BrC}_{6} \mathrm{H}_{4}$	68	$68 / 68$	1	0
$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	97	$97 / 68$	1.426	0.154
${ }^{a} \mathrm{X}=$ substituents. ${ }^{b} 78 \% / 79 \%$ (based on 78% yield of 4,4'-dinitrobiphenyl				
and 21% yield of 4-nitrophenol).				

Fig. S7 Correlation of product ratios with the Hammett equation. $\mathrm{y}=0.19 \mathrm{x}-0.05 ; \mathrm{R}^{2}=$ 0.70 .

Spectroscopic data of products

2,2'-dibromobiphenyl

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}$): $\delta 7.72$ (dd, $2 \mathrm{H}, J=7.6,1.4 \mathrm{~Hz}$), 7.46 (td, $2 \mathrm{H}, J=7.6$, $1.4 \mathrm{~Hz}), 7.35(\mathrm{td}, 2 \mathrm{H}, J=7.6,1.4 \mathrm{~Hz}), 7.28(\mathrm{dd}, 2 \mathrm{H}, J=7.6,1.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO, ppm): $\delta 141.95,132.81,131.52,130.42,128.15,123.21$

3,3'-dibromobiphenyl

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.71(\mathrm{t}, \mathbf{2 H}, J=1.8 \mathrm{~Hz}), 7.53-7.48(\mathrm{~m}, 4 \mathrm{H})$, $7.32(\mathrm{t}$, $2 \mathrm{H}, ~ J=7.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 141.82,130.83,130.39,130.19$, 125.75, 123.00

3,3'-dinitrobiphenyl

${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.50(\mathrm{t}, 2 \mathrm{H}, J=1.8 \mathrm{~Hz}), 8.30(\mathrm{~m}, 2 \mathrm{H}), 7.97(\mathrm{~m}, 2 \mathrm{H})$, 7.70 (t, 2H, $J=8.0 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 148.90,140.35,133.07$, 130.31, 123.31, 122.12

4,4'-dibromobiphenyl

${ }^{1}{ }^{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.56(\mathrm{dd}, \mathbf{4 H}, J=8.4 \mathrm{~Hz}$), $7.41(\mathrm{dd}, \mathbf{4 H}, J=8.4 \mathrm{~Hz})$; ${ }^{13}$ C NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 138.93,132.03,128.52,121.96$

4,4'-dimethoxybiphenyl

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 7.49$ (dd, $\mathbf{4 H}, J=8.6 \mathrm{~Hz}$), 6.97 (dd, $\mathbf{4 H}, J=8.6 \mathrm{~Hz}$), 3.85 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}, ~ \mathbf{p p m}$): δ 158.71, 133.51, 127.73, 114.17, 55.35

4,4'-dinitrobiphenyl

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.38$ (dd, $\mathbf{4 H}, J=8.8 \mathrm{~Hz}$), 7.80 (dd, $\mathbf{4 H}, J=8.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathbf{p p m}$): δ 148.10, 144.99, 128.33, 124.39

4-nitrophenol

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.17$ (dd, $2 \mathrm{H}, J=9.2 \mathrm{~Hz}$), $6.90(\mathrm{dd}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}$), 5.93 (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 161.82,141.39,126.38,115.83$
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO, $25^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}\right.$, DMSO, $\left.25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{HNMRR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$

