Supplementary information

Influence of conformational changes on spin crossover properties and superstructure formation in 2D coordination polymers [Fe(hbtz)₂(RCN)₂](ClO₄)₂

Maria Książek, a Joachim Kusz, a Agata Białońska, b Robert Bronisz, b Marek Weselski, b

^a Institute of Physics, University of Silesia, PL-40007 Katowice, Poland.

^b Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland.

Contents:

- 1. Crystallographic data for **1** (Table S1).
- 2. Crystallographic data for **2** (Table S2).
- 3. Selected C-H...N and C-H…O interatomic contacts [Å] and angles [°] for 1 (Tables S3a and S3b).
- Selected C-H...N and C-H...O interatomic contacts [Å] and angles [°] for 2 (Table S4).
- 5. Selected Fe-N distances (Å), N-Fe-N and Fe-N-C angles (deg), torsion angles (deg), Fe...Fe interatomic distances and distances between nitrogen donor atoms (Å) for 1 in cooling mode (Table S5)/
- 6. Intermolecular contacts involving =CH- and $-CH_2$ groups of allyl cyanide in **1**.
- 7. Drawing showing C-H...N contacts established within polymeric layer in **2** (Figure S1).
- 8. A comparison of changes of rhombic windows dimensions in 1 and 2 (Figure S2).
- 9. Selected intermolecular distances in 1 (Figure S3).
- 10. Temperature dependence of the lattice parameters for complex 1 (Figure S4).
- 11. The intensity of the superstructure reflections in 1 (Figure S5).
- 12. Figures showing corrugation pf the polymeric layers in 1 (Figure S6).

Temperature/K	260 K	240 K	220 K	200 K	190 K	180 K	170 K	160 K	150 K	140K
Chemical formula					$C_{24}H_{38}Cl$	$_{2}$ FeN $_{18}$ O $_{8}$				
Formula Mass					833	3.47				
Crystal system					Tric	linic				
Space group					Р	-1				
Ζ				1					2	
a/Å	9.806(2)	9.7687(14)	9.7337(9)	9.6999(4)	9.6900(3)	9.6846(3)	9.6826(4)	10.2366(16)	10.1849(11)	10.1557(8)
b/Å	10.085(2)	10.0740(13)	10.0664(9)	10.0480(3)	10.0364(3)	10.0208(3)	10.0049(3)	11.7216(10)	11.6844(7)	11.6792(6)
$c/\text{\AA}$	11.9136(16)	11.9033(10)	11.8781(7)	11.8504(4)	11.8284(3)	11.8009(3)	11.7749(4)	16.2866(19)	16.3321(13)	16.3519(10)
α/°	72.577(15)	72.646(10)	72.682(7)	72.774(3)	72.750(3)	72.684(3)	72.597(3)	71.251(7)	70.931(5)	70.681(4)
β/°	67.241(17)	67.387(10)	67.560(7)	67.761(3)	67.838(3)	67.886(3)	67.901(3)	85.263(11)	85.251(8)	85.255(6)
γ/°	63.07(2)	63.069(14)	63.110(9)	63.065(4)	63.027(4)	62.963(4)	62.901(4)	86.212(11)	86.202(8)	86.237(6)
Unit cell volume/Å ³	957.4(4)	953.1(2)	948.32(16)	942.16(7)	938.44(6)	933.87(6)	929.50(7)	1842.6(4)	1829.0(3)	1822.5(2)
No. of reflections measured	7141	7106	7062	7031	7005	6955	6902	13669	13573	13459
No. of independent reflections	3831	3811	3785	3764	3754	3728	3702	7362	7310	7282
R _{int}	0.0235	0.0218	0.0243	0.0231	0.0219	0.0235	0.0212	0.0551	0.0547	0.0450
Final R_1 values $(I > 2\sigma(I))$	0.0421	0.0391	0.0384	0.0365	0.0362	0.0366	0.0365	0.0963	0.0869	0.0657
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0930	0.0868	0.0841	0.0809	0.0800	0.0810	0.0796	0.2454	0.2151	0.1588
Final R_1 values (all data) ^{<i>a</i>}	0.0558	0.0516	0.0494	0.0461	0.0450	0.0458	0.0452	0.1487	0.1224	0.0907
Final $wR(F^2)$ values (all data) ^b	0.1003	0.0932	0.0894	0.0863	0.0843	0.0859	0.0839	0.2889	0.2416	0.1757

Table S1. Crystallographic data for 1

Continued Table S1

Temperature/K	120K	100K	15K	15K(LIESST)	120 K	140 K	150 K	160 K	170 K	180 K
Chemical formula					$C_{24}H_{38}C_{38}$	l ₂ FeN ₁₈ O ₈				
Formula Mass					83.	3.47				
Crystal system					Tric	elinic				
Space group					P	2-1				
Ζ				4	2					1
a/Å	10.1301(3)	10.1153(3)	10.0869(3)	10.2326(3)	10.1287(3)	10.1555(8)	10.1820(11)	10.2350(14)	9.6835(3)	9.6861(3)
b/Å	11.6920(2)	11.6862(2)	11.6409(3)	11.7947(6)	11.6897(2)	11.6805(5)	11.6837(8)	11.7152(10)	10.0053(3)	10.0200(3)
$c/{ m \AA}$	16.3668(4)	16.3633(4)	16.3369(6)	16.3663(7)	16.3677(4)	16.3542(10)	16.3334(13)	16.2943(17)	11.7750(3)	11.7997(3)
$\alpha/^{\circ}$	70.393(2)	70.220(2)	70.019(3)	70.049(4)	70.389(2)	70.680(4)	70.914(5)	71.229(6)	72.587(3)	72.678(3)
$\beta/^{\circ}$	85.284(3)	85.286(2)	85.171(3)	84.367(3)	85.287(3)	85.266(6)	85.251(7)	85.237(9)	67.904(3)	67.891(3)
γ/°	86.322(3)	86.302(3)	86.178(2)	85.390(4)	86.320(3)	86.244(6)	86.224(8)	86.220(10)	62.900(4)	62.963(4)
Unit cell volume/Å ³	1818.54(8)	1812.63(8)	1794.95(10)	1845.42(14)	1817.99(8)	1823.0(2)	1828.4(3)	1841.9(4)	929.61(6)	933.85(6)
No. of reflections measured	13580	13544	12348	9151	13582	13550	13561	13656	6926	6975
No. of independent reflections	7281	7259	6426	6648	7278	7287	7305	7364	3702	3726
R _{int}	0.0240	0.0227	0.0348	0.0147	0.0233	0.0473	0.0609	0.0654	0.0190	0.0205
Final R_I values $(I > 2\sigma(I))$	0.0390	0.0363	0.0403	0.0392	0.0390	0.0635	0.0959	0.1143	0.0349	0.0363
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0874	0.0803	0.0988	0.0982	0.0864	0.1543	0.2744	0.3149	0.0751	0.0785
Final R_1 values (all data) ^{<i>a</i>}	0.0484	0.0446	0.0480	0.0437	0.0476	0.0862	0.1287	0.1605	0.0436	0.0450
Final $wR(F^2)$ values (all data) ^b	0.0927	0.0846	0.1022	0.1009	0.0909	0.1713	0.3044	0.3596	0.0795	0.0828

Continued Table S1.

Continued Table 51.							
Temperature/K	190 K	200 K	220 K	240K	260K	280 K	300 K
Chemical formula				C24H38Cl2FeN18	O ₈		
Formula Mass				833.47			
Crystal system				Triclinic			
Space group				<i>P</i> -1			
Ζ				1			
a/Å	9.6916(4)	9.7013(4)	9.7287(4)	9.7690(11)	9.8066(13)	9.8441(16)	9.8755(18)
b/Å	10.0352(4)	10.0478(4)	10.0623(4)	10.0770(11)	10.0827(13)	10.0890(15)	10.0915(17)
$c/\text{\AA}$	11.8275(4)	11.8495(4)	11.8839(4)	11.9043(8)	11.9238(10)	11.9417(11)	11.9545(13)
α/°	72.746(3)	72.777(3)	72.731(3)	72.595(8)	72.502(9)	72.423(11)	72.364(12)
β/°	67.845(3)	67.771(3)	67.580(3)	67.402(8)	67.213(10)	67.060(12)	66.950(13)
γ/°	63.022(4)	63.063(4)	63.103(4)	63.038(11)	62.998(13)	62.951(15)	62.929(18)
Unit cell volume/Å ³	938.40(7)	942.26(7)	948.11(7)	953.1(2)	957.2(2)	961.4(3)	964.8(3)
No. of reflections measured	7018	7038	7082	7108	7159	7185	7206
No. of independent reflections	3752	3764	3786	3809	3833	3844	3856
R _{int}	0.0220	0.0214	0.0211	0.0222	0.0227	0.0226	0.0234
Final R_I values $(I > 2\sigma(I))$	0.0362	0.0355	0.0375	0.0390	0.0398	0.0417	0.0446
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0785	0.0787	0.0829	0.0859	0.0904	0.0939	0.0980
Final R_1 values (all data) ^{<i>a</i>}	0.0453	0.0455	0.0489	0.0521	0.0554	0.0579	0.0623
Final $wR(F^2)$ values (all data) ^b	0.0834	0.0840	0.0887	0.0928	0.0992	0.1027	0.1080

Temperature/K	250(2)	200(2)	160(2)	100(2)
Chemical formula	$C_{22}H_{38}Cl_2$	FeN ₁₈ O ₈		
Formula Mass	809.45			
Crystal system	triclinic			
Space group	P-1			
Ζ	1			
a/Å	9.495(3)	9.454(2)	9.403(3)	9.341(3)
b/Å	9.667(2)	9.637(2)	9.602(2)	9.555(2)
$c/\text{\AA}$	11.668(4)	11.621(4)	11.546(4)	11.409(4)
$\alpha/^{\circ}$	89.51(3)	89.74(3)	90.08(3)	90.68(3)
$\beta/^{\circ}$	68.43(4)	68.55(4)	68.46(4)	68.74(4)
γ/°	65.88(3)	66.06(3)	66.12(3)	66.37(3)
Unit cell volume/Å ³	896.3(5)	887.7(4)	872.7(4)	854.6(4)
No. of reflections measured	5543	7719	7396	7328
No. of independent reflections	3261	3839	3754	3667
R _{int}	0.0277	0.0255	0.0252	0.0234
Final R_I values $(I > 2\sigma(I))$	0.0342	0.0323	0.0313	0.0298
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.0794	0.0803	0.0763	0.0780
Final R_1 values (all data) ^{<i>a</i>}	0.0541	0.0477	0.0447	0.0382
Final $wR(F^2)$ values (all data) ^b	0.0844	0.0851	0.0801	0.0804

 Table S2. Crystallographic data for 2.

^{*a*} $RI = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. ^{*b*} $wR^2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$.

Table S3a. Selected C-H...N and C-H...O interatomic contacts [Å] and angles [°] for **1** in cooling (from 260 to 170 K) and in the heating (from 170 to 300 K) modes.

[Ea(hhtz) (AICN)](CIO)	260	K	240) K	220	K	200	K	190	K	180	K
$[Fe(IIDIZ)_2(AICIN)_2](CIO_4)_2$	DA	<(DHA)										
Nitriletz (adjusted layer)										-		
C22-H22N11(-1+x,1+y,z)	3.649(7)	131.0	3.627(6)	129.8	3.611(6)	129.0	3.611(5)	128.2	3.635(6)	127.8	3.663(6)	127.9
C231-H23CN4(-1+x,y,z)	3.35(2)	114.9	3.32(3)	113.9	3.36(4)	105.7	3.30(4)	115.2	3.67(9)	111.5	3.77(9)	118.7
C231-H23DN13(-x,1-y,1-z)	3.41(4)	166.8	3.33(5)	164.9	3.31(7)	164.0	3.25(7)	164.1	3.32(6)	153.2	3.57(7)	148.3
C231-H23DN14(-x,1-y,1-z)	3.14(3)	161.3	3.07(4)	159.6	3.12(5)	158.4	2.99(5)	161.1	3.09(5)	171.2	3.32(6)	177.4
C233-H23HN4(-1+x,y,z)	3.48(4)	142.5	3.49(5)	142.3	3.39(5)	139.7	3.40(6)	139.5	3.41(7)	130.8	3.23(5)	133.1
C233-H23GN11(-1+x,1+y,z)	3.48(5)	118.6	3.54(6)	111.8	3.56(6)	119.9	3.54(7)	120.0	3.61(8)	129.9	3.63(7)	142.1
C232-H23FN4(-1+x,y,z)	3.54(3)	142.2	3.45(3)	142.4	3.40(3)	149.4	3.44(3)	149.6	3.35(2)	147.4	3.46(2)	160.5
C231-H23DN12(-x,1-y,1-z)	3.74(5)	147.6	3.68(6)	142.1	3.76(7)	141.5	3.58(8)	146.3	3.37(7)	131.1	3.56(8)	132.4
C23-H23AN20	3.536(5)	121.5	3.533(4)	121.7	3.529(4)	122.5	3.531(4)	122.5	3.535(4)	122.5	3.550(4)	122.7
NitrileClO ₄ -				-								
C21-H21BO1(-x,2-y,1-z)	3.325(15)	167.2	3.403(17)	169.3	3.362(16)	170.4	3.348(14)	170.1	3.339(14)	170.1	3.321(15)	169.2
C21-H21AO4	3.393(10)	137.2	3.404(9)	138.5	3.416(8)	142.3	3.415(8)	144.6	3.418(8)	144.1	3.424(9)	145.5
C21-H21BO4(-x,2-y,1-z)	3.459(12)	119.9	3.445(11)	119.4	3.425(10)	119.1	3.417(9)	118.4	3.400(9)	118.0	3.397(11)	117.8
C21-H21AO41	3.400(12)	153.0	3.405(10)	154.4	3.410(9)	158.3	3.420(8)	160.7	3.405(9)	159.8	3.419(10)	160.8
C23-H23BO3(x, -1+y,z)	3.622(11)	122.5	3.626(11)	123.5	3.632(10)	125.0	3.627(9)	126.0	3.627(9)	126.7	3.603(9)	127.2
C23-H23BO31(x,-1+y,z)	3.061(10)	118.0	3.067(8)	119.0	3.084(7)	120.2	3.076(7)	120.9	3.068(7)	121.4	3.042(7)	121.7
C211-H21DO11	3.80(4)	124.6	3.63(4)	123.5	3.65(5)	124.5	3.65(6)	125.5	3.59(6)	119.4	3.50(7)	122.9
C211-H21DO41	3.55(4)	172.7	3.53(5)	165.5	3.55(6)	170.5	3.56(7)	174.2	3.48(7)	155.8	3.40(8)	158.5
C212-H21EO1	3.01(5)	146.1	3.13(5)	148.2	3.13(7)	150.2	3.10(6)	149.7	3.06(7)	144.7	3.08(7)	160.4
C212-H21FO4	3.27(2)	171.8	3.30(3)	173.4	3.29(3)	174.4	3.27(3)	171.9	3.40(4)	175.5	3.31(4)	168.4
C212-H21FO41	3.35(3)	155.5	3.37(3)	156.8	3.35(4)	159.6	3.34(4)	156.8	3.45(5)	158.6	3.37(5)	167.2
C212-H21EO4(-x,2-y,1-z)	3.13(5)	110.2	3.15(5)	109.0	3.17(6)	109.9	3.14(6)	108.9	3.12(6)	109.9	3.14(6)	117.3
C212-H21EO11(-x,2-y,1-z)	3.46(5)	142.6	3.39(5)	137.3	3.41(7)	139.8	3.38(6)	139.0	3.38(6)	136.0	3.43(6)	151.2
C212-H21EO31(-x,2-y,1-z)	3.43(5)	144.8	3.45(6)	144.2	3.46(7)	143.2	3.43(7)	143.3	3.36(7)	148.2	3.42(8)	144.2
C213-H21HO1(-x,2-y,1-z)	3.04(3)	146.7	3.13(4)	150.6	3.14(4)	147.2	3.15(5)	147.9	3.19(6)	140.1	3.20(5)	146.9
C213-H21HO4(-x,2-y,1-z)	3.22(3)	121.2	3.23(4)	120.7	3.25(4)	119.3	3.27(5)	117.9	3.31(5)	113.2	3.32(5)	116.0
C213-H21HO11(-x,2-y,1-z)	3.52(3)	145.0	3.45(4)	142.8	3.49(4)	140.2	3.50(5)	140.3	3.57(5)	133.8	3.61(5)	140.7
C213-H21HO31(-x,2-y,1-z)	3.23(5)	154.8	3.27(6)	153.4	3.25(6)	154.5	3.27(8)	152.7	3.30(8)	152.9	3.30(8)	150.7
C221-H22AO1(-x,2-y,1-z)	3.19(3)	155.2	3.17(4)	149.4	3.21(5)	160.9	3.18(5)	152.3	3.46(8)	76.0	3.50(8)	77.2
C221_b-H22A_bO31(-x,2-y,1-z)	3.33(3)	148.2	3.28(4)	153.4	3.34(5)	126.6	3.33(5)	151.7	3.53(8)	108.8	3.65(8)	108.8
Alkyl chain												
C1-H1AO2	3.417(7)	145.7	3.412(6)	144.8	3.403(6)	144.5	3.398(6)	144.0	3.392(6)	143.9	3.383(5)	143.6
C1-H1AO21	3.450(8)	161.9	3.421(7)	160.5	3.410(7)	159.7	3.385(6)	158.8	3.381(5)	158.2	3.371(5)	157.9
C1-H1BO3(-x,-y+2,-z+2)	3.165(6)	117.4	3.155(6)	117.1	3.150(5)	117.1	3.148(5)	117.0	3.146(5)	117.2	3.149(5)	117.2
C2-H2BO3(-x,-y+2,-z+2)	3.478(6)	120.1	3.472(6)	119.5	3.467(6)	119.3	3.461(5)	119.0	3.461(5)	119.0	3.457(5)	119.2
C3-H3BO2	3.403(6)	150.3	3.381(6)	150.3	3.370(5)	150.1	3.357(5)	150.2	3.345(5)	150.2	3.333(5)	150.1
C11-H11AO1(x,-1+y,z)	3.427(19)	135.8	3.231(13)	134.8	3.234(13)	135.2	3.205(11)	135.1	3.205(12)	135.9	3.219(13)	135.9
C11-H11AO11(x,-1+y,z)	3.430(17)	145.2	3.610(14)	144.7	3.589(14)	145.0	3.573(11)	145.2	3.548(12)	145.6	3.523(12)	145.9

C11-H11AO21(-x,1-y,2-z)	3.470(7)	115.4	3.461(6)	115.8	3.456(6)	115.8	3.456(5)	115.9	3.456(5)	115.6	3.453(5)	115.6
C12-H12AO21(-x,1-y,2-z)	3.340(8)	124.7	3.316(7)	123.6	3.300(6)	123.0	3.286(6)	122.2	3.274(6)	122.0	3.268(6)	122.3
C13-H13BO41(1+x,-1+y,z)	3.405(10)	141.6	3.397(9)	141.7	3.377(9)	141.1	3.364(8)	140.6	3.378(8)	140.7	3.373(8)	140.8
C14-H14O1(1-x,1-y,1-z)	3.293(15)	156.6	3.285(13)	157.2	3.273(13)	156.9	3.265(11)	156.6	3.244(12)	156.0	3.241(12)	155.4
C14-H14O11(1-y,-y,2-z)	3.360(17)	168.3	3.350(14)	166.0	3.343(14)	166.4	3.323(12)	167.3	3.330(12)	167.3	3.316(12)	167.6
C4-H4O4(1+x,-1+y,z)	3.272(8)	170.7	3.260(7)	171.0	3.252(7)	170.8	3.239(6)	170.5	3.228(6)	170.2	3.220(6)	169.7
C4-H4O31(1+x,-1+y,z)	3.373(9)	139.4	3.354(8)	138.4	3.337(7)	138.5	3.314(6)	137.9	3.305(6)	137.8	3.285(6)	137.7
C4-H4O3(1+x, -1+y, z)	3.409(8)	135.1	3.397(7)	134.4	3.381(7)	134.1	3.359(6)	133.6	3.349(6)	133.4	3.334(6)	133.1
C4-H4O41(1+x,-1+y,z)	3.312(10)	159.4	3.306(8)	160.4	3.308(8)	159.9	3.301(7)	159.7	3.300(6)	159.5	3.297(7)	158.6
C1-H1BN1(1+x,y-1,z)	3.584(3)	149.6	3.572(3)	149.3	3.561(3)	149.3	3.548(3)	149.0	3.550(3)	149.2	3.548(3)	149.4
C14-H14N11(1-x,-y,1-z)	3.609(4)	87.4	3.607(3)	86.6	3.616(3)	85.7	3.632(3)	84.1	3.647(3)	83.5	3.668(3)	82.9

Continued Table S3a.

$[E_{-}(h_{+}) (A CN)] (C O)$	170	K	170	K	180	К	190	K	200	K	220	K
$[Fe(nDtZ)_2(AICN)_2](CIO_4)_2$	DA	<(DHA)										
Nitriletz (adjusted layer)												
C22-H22N11(-1+x,1+y,z)	3.682(7)	128.3	3.693(6)	128.1	3.664(6)	127.9	3.641(6)	127.7	3.622(6)	127.8	3.612(5)	128.8
C231-H23CN4(-1+x,y,z)	3.86(9)	115.2	3.79(8)	113.1	3.86(9)	118.6	3.72(8)	114.3	3.78(8)	116.6	3.26(3)	103.8
C231-H23DN13(-x,1-y,1-z)	3.50(7)	153.1	3.51(6)	154.2	3.57(7)	148.8	3.48(6)	151.1	3.54 (7)	148.6	3.42(7)	159.0
C231-H23DN14(-x,1-y,1-z)	3.31(6)	174.1	3.30(5)	172.8	3.34(6)	176.1	3.22(5)	178.4	3.28(6)	177.5	3.17(5)	163.6
C233-H23HN4(-1+x,y,z)	3.31(4)	136.5	3.34(5)	138.8	3.28(5)	131.8	3.34(6)	133.5	3.36(5)	133.4	3.43(6)	139.7
C233-H23GN11(-1+x,1+y,z)	3.59(5)	137.6	3.55(6)	134.5	3.57(6)	144.9	3.57(7)	134.5	3.58(6)	130.0	3.56(6)	116.3
C232-H23FN4(-1+x,y,z)	3.47(2)	158.5	3.470(19)	157.7	3.45(2)	157.5	3.39(3)	152.7	3.39(3)	156.4	3.42(3)	146.9
C231-H23DN12(-x,1-y,1-z)	3.46(7)	137.3	3.49(6)	138.9	3.52(7)	133.6	3.49(7)	133.4	3.52(7)	132.4	3.86(7)	139.1
C23-H23AN20	3.560(4)	122.3	3.561(4)	122.2	3.551(4)	122.4	3.539(4)	122.7	3.532(4)	122.8	3.528(4)	122.5
NitrileClO ₄ -												
C21-H21BO1(-x,2-y,1-z)	3.343(14)	170.1	3.349(15)	169.6	3.309(14)	169.2	3.312(14)	169.2	3.344(15)	170.0	3.369(16)	169.9
C21-H21AO4	3.429(9)	144.7	3.428(8)	145.0	3.420(9)	144.8	3.424(8)	145.2	3.413(9)	144.1	3.411(8)	142.0
C21-H21BO4(-x,2-y,1-z)	3.390(11)	117.9	3.392(10)	117.8	3.394(10)	117.8	3.407(10)	118.0	3.421(10)	118.1	3.436(10)	118.6
C21-H21AO41	3.412(10)	159.5	3.420(9)	159.7	3.416(9)	168.9	3.411(9)	160.8	3.420(10)	159.7	3.416(9)	158.0
C23-H23BO3(x, -1+y,z)	3.591(9)	127.1	3.584(9)	127.0	3.605(9)	126.9	3.618(9)	126.8	3.632(9)	126.2	3.632(10)	125.2
C23-H23BO31(x,-1+y,z)	3.033(7)	121.6	3.026(7)	121.6	3.046(7)	121.6	3.051(7)	121.5	3.071(7)	121.3	3.070(8)	120.3
C211-H21DO11	3.54(7)	125.0	3.58(7)	126.1	3.52(7)	123.7	3.57(6)	122.2	3.52(7)	122.3	3.63(5)	124.5
C211-H21DO41	3.45(8)	164.3	3.49(7)	169.1	3.41(8)	160.0	3.45(7)	160.9	3.44(8)	159.6	3.53(5)	169.6
C212-H21EO1	3.09(6)	158.5	3.09(5)	156.9	3.04(6)	155.9	3.06(7)	153.2	3.09(8)	155.1	3.06(6)	143.3
C212-H21FO4	3.33(3)	169.7	3.34(2)	170.8	3.32(4)	171.8	3.35(4)	174.2	3.33(5)	173.7	3.31(3)	170.3
C212-H21FO41	3.38(4)	165.9	3.39(4)	165.3	3.38(5)	163.9	3.40(5)	163.5	3.40(6)	164.9	3.39(4)	153.2
C212-H21EO4(-x,2-y,1-z)	3.12(5)	116.0	3.11(5)	116.0	3.11(5)	115.3	3.15(7)	114.5	3.16(7)	114.6	3.11(6)	106.5
C212-H21EO11(-x,2-y,1-z)	3.42(5)	148.8	3.40(5)	148.3	3.42(6)	147.5	3.44(7)	145.2	3.40(8)	145.4	3.35(6)	133.6
C212-H21EO31(-x,2-y,1-z)	3.40(7)	145.1	3.38(6)	145.6	3.39(7)	145.8	3.40(8)	146.3	3.42(9)	145.5	3.40(7)	144.7
C213-H21HO1(-x,2-y,1-z)	3.18(4)	147.1	3.17(5)	150.2	3.18(4)	141.4	3.15(5)	139.5	3.19(5)	142.2	3.14(5)	147.6
C213-H21HO4(-x,2-y,1-z)	3.28(4)	116.8	3.27(5)	117.8	3.32(4)	113.5	3.29(5)	114.6	3.31(5)	114.8	3.26(5)	118.7
C213-H21HO11(-x,2-y,1-z)	3.56(4)	141.0	3.54(5)	143.9	3.61(4)	136.2	3.57(5)	135.0	3.56(5)	135.9	3.49(5)	140.7
C213-H21HO31(-x,2-y,1-z)	3.26(6)	152.0	3.28(7)	150.3	3.30(7)	151.9	3.25(7)	154.5	3.29(7)	152.9	3.27(7)	153.6
C221-H22AO1(-x,2-y,1-z)	3.47(8)	75.5	3.48(7)	82.2	3.50(7)	72.7	3.48(7)	77.3	3.52(8)	73.9	3.30(4)	159.6
C221_b-H22A_bO31(-x,2-y,1-z)	3.59(8)	107.4	3.59(7)	113.7	3.67(8)	103.6	3.60(7)	109.9	3.66(8)	105.0	3.43(5)	132.7
Alkyl chain												
C1-H1AO2	3.381(5)	143.5	3.380(5)	143.4	3.391(5)	143.5	3.391(5)	143.7	3.398(6)	143.6	3.398(6)	144.5
C1-H1AO21	3.364(5)	157.4	3.368(5)	157.2	3.370(5)	157.7	3.380(5)	158.1	3.383(6)	158.4	3.408(6)	159.7
C1-H1BO3(-x,-y+2,-z+2)	3.144(5)	117.0	3.149(5)	117.0	3.147(5)	116.9	3.154(5)	117.0	3.151(5)	116.7	3.154(6)	117.1
C2-H2BO3(-x,-y+2,-z+2)	3.449(5)	119.2	3.455(5)	119.3	3.458(5)	119.2	3.469(5)	119.2	3.467(5)	119.2	3.472(6)	119.3
С3-Н3ВО2	3.325(5)	150.4	3.322(5)	150.4	3.335(5)	150.2	3.347(5)	150.1	3.355(5)	150.1	3.370(5)	150.0
C11-H11AO1(x,-1+y,z)	3.200(12)	136.9	3.209(13)	137.2	3.230(14)	135.9	3.237(14)	135.6	3.215(13)	135.2	3.235(14)	135.2
C11-H11AO11(x,-1+y,z)	3.531(11)	146.4	3.523(13)	146.3	3.501(13)	146.0	3.518(14)	145.1	3.564(12)	144.7	3.581(15)	144.9
C11-H11AO21(-x,1-y,2-z)	3.445(5)	115.4	3.442(5)	115.4	3.453(5)	115.7	3.450(5)	115.6	3.453(5)	115.9	3.461(6)	115.7
C12-H12AO21(-x,1-y,2-z)	3.257(6)	122.2	3.251(5)	122.1	3.270(6)	121.9	3.270(6)	122.3	3.280(6)	122.3	3.299(6)	123.1
C13-H13BO41(1+x,-1+y,z)	3.375(8)	140.8	3.371(8)	140.3	3.372(8)	140.8	3.366(8)	140.6	3.374(8)	141.1	3.385(9)	141.2

C14-H14O1(1-x,1-y,1-z)	3.229(11)	154.9	3.230(13)	155.3	3.238(12)	155.2	3.230(12)	155.9	3.243(12)	156.5	3.271(13)	157.0
C14-H14O11(1-y,-y,2-z)	3.310(11)	167.0	3.306(13)	166.9	3.316(11)	167.8	3.346(12)	167.9	3.341(12)	167.3	3.346(15)	166.6
C4-H4O4(1+x,-1+y,z)	3.204(6)	169.3	3.209(6)	169.6	3.222(6)	169.7	3.228(6)	170.0	3.239(6)	170.3	3.247(7)	170.6
C4-H4O31(1+x,-1+y,z)	3.277(5)	137.6	3.274(5)	137.4	3.285(6)	137.8	3.297(6)	138.0	3.305(6)	137.9	3.335(7)	138.1
C4-H4O3(1+x, -1+y, z)	3.323(6)	132.7	3.327(6)	132.6	3.341(6)	133.2	3.352(6)	133.8	3.370(6)	133.8	3.384(7)	134.2
C4-H4O41(1+x,-1+y,z)	3.299(7)	158.0	3.294(7)	158.0	3.296(7)	158.6	3.304(7)	158.8	3.299(7)	159.8	3.308(8)	160.2
C1-H1BN1(1+x,y-1,z)	3.548(3)	149.7	3.549(3)	149.7	3.547(3)	149.5	3.546(3)	149.3	3.551(3)	149.3	3.558(3)	149.2
C14-H14N11(1-x,-y,1-z)	3.689(3)	82.1	3.689(3)	82.2	3.667(3)	82.8	3.645(3)	83.6	3.629(3)	84.2	3.614(3)	85.5

Continued Table S3a.

$[\Gamma_{-}(h) \leftarrow (A(CN))](C(O))$	240 K		260 K		280	K	300 K	
$[Fe(nbl2)_2(AICN)_2](CIO_4)_2$	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)
Nitriletz (adjusted layer)								
C22-H22N11(-1+x,1+y,z)	3.626(6)	129.8	3.642(7)	131.0	3.669(8)	131.5	3.715(11)	132.1
C231-H23CN4(-1+x,y,z)	3.29(2)	112.0	3.31(2)	111.3	3.356(17)	111.7	3.381(17)	111.9
C231-H23DN13(-x,1-y,1-z)	3.39(5)	163.5	3.47(4)	164.1	3.53(3)	166.0	3.58(3)	167.2
C231-H23DN14(-x,1-y,1-z)	3.10(4)	163.1	3.16(3)	163.9	3.24(2)	162.9	3.28(3)	158.4
C233-H23HN4(-1+x,y,z)	3.47(5)	144.6	3.47(4)	141.4	3.51(4)	141.5	3.60(4)	133.6
C233-H23GN11(-1+x,1+y,z)	3.51(5)	111.9	3.51(5)	118.3	3.50(4)	118.3	3.46(5)	127.8
C232-H23FN4(-1+x,y,z)	3.49(3)	141.9	3.51(2)	143.5	3.64(2)	138.7	3.61(2)	136.8
C231-H23DN12(-x,1-y,1-z)	3.73(5)	142.9	3.79(5)	143.9	3.86(3)	145.9	3.89(3)	144.0
C23-H23AN20	3.529(4)	122.0	3.539(5)	121.3	3.533(6)	121.0	3.549(7)	119.6
NitrileClO ₄ -								
C21-H21BO1(-x,2-y,1-z)	3.395(17)	169.5	3.40(2)	168.2	3.326(14)	167.0	3.343(18)	165.9
C21-H21AO4	3.391(9)	139.7	3.388(10)	136.9	3.390(11)	136.3	3.384(14)	134.4
C21-H21BO4(-x,2-y,1-z)	3.441(11)	119.4	3.452(12)	119.8	3.459(12)	120.2	3.463(14)	120.0
C21-H21AO41	3.421(10)	155.7	3.411(11)	152.6	3.416(12)	152.3	3.398(15)	150.0
C23-H23BO3(x, -1+y,z)	3.639(11)	124.1	3.629(11)	122.5	3.601(12)	121.9	3.608(14)	120.0
C23-H23BO31(x,-1+y,z)	3.068(8)	119.1	3.062(9)	117.9	3.045(10)	117.5	3.034(12)	115.4
C211-H21DO11	3.63(4)	123.9	3.64(4)	124.3	3.75(3)	124.5	3.73(3)	122.3
C211-H21DO41	3.55(4)	169.0	3.54(4)	168.6	3.52(3)	168.6	3.49(3)	163.3
C212-H21EO1	3.11(6)	148.2	3.10(5)	150.0	2.98(4)	146.2	3.00(4)	152.4
С212-Н21FО4	3.28(3)	172.6	3.28(2)	173.8	3.27(2)	170.6	3.29(2)	173.9
C212-H21FO41	3.38(3)	155.8	3.38(3)	157.7	3.38(3)	154.2	3.39(3)	159.6
C212-H21EO4(-x,2-y,1-z)	3.14(5)	109.1	3.13(5)	110.4	3.10(4)	110.8	3.11(4)	115.7
C212-H21EO11(-x,2-y,1-z)	3.36(6)	137.2	3.40(5)	139.9	3.46(4)	142.7	3.47(4)	148.1
C212-H21EO31(-x,2-y,1-z)	3.45(6)	144.9	3.45(5)	145.1	3.40(4)	146.0	3.42(4)	147.7
C213-H21HO1(-x,2-y,1-z)	3.11(4)	150.1	3.11(4)	149.5	3.03(3)	147.3	3.03(4)	137.8
C213-H21HO4(-x,2-y,1-z)	3.21(4)	121.7	3.22(4)	120.9	3.20(3)	121.9	3.19(4)	116.6
C213-H21HO11(-x,2-y,1-z)	3.43(4)	144.2	3.47(4)	142.8	3.53(3)	145.9	3.52(4)	136.3
C213-H21HO31(-x,2-y,1-z)	3.26(6)	153.1	3.26(5)	154.5	3.23(5)	154.8	3.23(5)	158.4
C221-H22AO1(-x,2-y,1-z)	3.23(4)	150.0	3.23(3)	148.5	3.22(3)	153.5	3.27(3)	142.9
C221_b-H22A_bO31(-x,2-y,1-z)	3.35(3)	154.0	3.36(3)	156.4	3.36(3)	149.7	3.39(3)	162.3
Alkyl chain								
C1-H1AO2	3.406(6)	144.9	3.410(7)	145.6	3.418(7)	145.6	3.429(8)	145.9
C1-H1AO21	3.425(7)	160.5	3.444(8)	161.7	3.466(9)	162.3	3.489(9)	163.1
C1-H1BO3(-x,-y+2,-z+2)	3.163(6)	117.3	3.164(6)	117.3	3.167(6)	117.1	3.174(7)	117.3
C2-H2BO3(-x,-y+2,-z+2)	3.486(6)	119.4	3.484(7)	119.9	3.481(7)	120.2	3.492(8)	120.3
C3-H3BO2	3.386(6)	150.0	3.397(6)	150.3	3.410(6)	150.2	3.414(7)	150.4
C11-H11AO1(x,-1+y,z)	3.234(14)	134.8	3.273(18)	134.9	3.451(19)	135.7	3.46(2)	135.4
C11-H11AO11(x,-1+y,z)	3.607(14)	144.9	3.60(2)	145.0	3.446(18)	145.3	3.46(2)	145.3
C11-H11AO21(-x,1-y,2-z)	3.458(6)	115.6	3.470(7)	115.5	3.475(7)	115.1	3.489(8)	114.7
C12-H12AO21(-x,1-y,2-z)	3.313(7)	123.7	3.335(7)	124.7	3.354(8)	125.1	3.371(9)	126.0
C13-H13BO41(1+x,-1+y,z)	3.390(9)	141.8	3.418(10)	142.0	3.420(10)	142.0	3.456(12)	142.1

C14-H14O1(1-x,1-y,1-z)	3.295(13)	157.1	3.287(16)	156.9	3.294(15)	156.1	3.308(17)	156.1
C14-H14O11(1-y,-y,2-z)	3.340(15)	166.4	3.366(18)	166.4	3.385(17)	168.3	3.379(19)	168.1
C4-H4O4(1+x,-1+y,z)	3.273(7)	170.6	3.276(8)	170.8	3.277(8)	170.6	3.277(10)	170.7
C4-H4O31(1+x,-1+y,z)	3.355(8)	138.5	3.373(9)	139.0	3.387(10)	139.8	3.401(11)	139.6
C4-H4O3(1+x, -1+y, z)	3.392(7)	134.7	3.409(8)	134.9	3.419(8)	135.3	3.432(10)	135.5
C4-H4O41(1+x,-1+y,z)	3.295(8)	159.9	3.306(9)	160.0	3.310(10)	159.2	3.320(13)	159.6
C1-H1BN1(1+x,y-1,z)	3.570(3)	149.5	3.583(3)	149.8	3.599(3)	150.2	3.614(3)	150.2
C14-H14N11(1-x,-y,1-z)	3.614(3)	86.2	3.611(4)	87.3	3.616(4)	87.9	3.620(4)	88.4

Table S3b. Selected C-H	.N and C-H…O interatomic contacts	[Å] and angles [°] for 1	(superstructure) in cooling (f	rom 160 to 15 K) mode and
after LIESST experiment (1	15 K).			

[Fe(hbtz) ₂ (AlCN) ₂](ClO ₄) ₂	160	K	150	K	140	K	120	K	100	K	15	K	15 K (L	IESST)
	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)	DA	<(DHA)
C22-H22N11(-1+x, y, z)	3.671(10)	125.9	3.649(9)	122.7	3.640(6)	122.0	3.618(4)	121.5	3.605(3)	121.2	3.574(3)	120.3	3.526(4)	120.2
C122-H122N41(1+x, y, z)	3.634(10)	127.6	3.626(9)	126.1	3.605(6)	124.9	3.588(3)	123.2	3.575(3)	122.3	3.538(3)	120.6	3.459(4)	119.2
C23-H23BN34(1-x, 1-y, 1-z)	4.210(10)	131.5	4.317(9)	125.6	4.358(6)	124.8	4.388(3)	123.7	4.395(3)	123.5	4.389(3)	122.9	4.144(4)	123.3
C123-H23DN4(2-x, 2-y, -z)	4.088(11)	145.4	4.080(11)	145.8	4.060(7)	143.3	4.027(3)	141.9	4.002(3)	141.3	3.953(3)	140.7	3.774(4)	142.1
C23 - H23B - N13(1-x, 1-y, 1-z)	5.143(11)	84.5	5.283(9)	81.3	5.329(6)	81.3	5.351(3)	80.6	5.358(3)	80.6	5.362(3)	80.1	5.313(4)	78.4
C123 - H23D - N43(2-x, 2-y, -z)	4.833(13)	92.1	4.768(11)	90.8	4.755(7)	88.3	4.750(3)	86.9	4.744(3)	86.2	4.708(3)	85.2	4.755(4)	85.0
C23 - H23B - N14(1-x, 1-y, 1-z)	4.985(11)	96.6	5.155(9)	93.2	5.207(6)	93.2	5.239(3)	92.6	5.248(3)	92.6	5.251(3)	92.1	5.150(4)	89.6
C123 - H23D - N44(2-x, 2-y, -z)	4.647(13)	105.3	4.595(11)	104.7	4.577(7)	102.2	4.557(3)	100.9	4.543(3)	100.3	4.497(3)	99.3	4.470(4)	97.8
C23 - H23B - N11(1-x, 1-y, 1-z)	6.000(12)	82.1	6.251(9)	79.9	6.321(6)	80.2	6.365(3)	80.0	6.378(3)	79.9	6.400(4)	79.6	6.383(4)	76.6
C123 - H23D - N41(2-x, 2-y, -z)	5.415(14)	87.4	5.334(12)	87.0	5.315(8)	85.2	5.309(4)	84.0	5.308(3)	83.5	5.293(3)	82.7	5.333(4)	80.5
C23 - H23B - N12(1-x, 1-y, 1-z)	5.733(11)	77.2	5.926(9)	74.6	5.988(6)	74.9	6.018(3)	74.3	6.028(3)	74.4	6.037(3)	74.0	6.043(4)	72.0
C123 - H23D - N42(2-x, 2-y, -z)	5.253(13)	83.1	5.176(12)	82.0	5.166(7)	79.8	5.170(3)	78.7	5.170(3)	78.1	5.147(3)	77.2	5.230(4)	76.5
C23-H23BN20(1-x, 1-y, 1-z)	3.873(10)	109.8	3.864(9)	105.1	3.867(6)	104.4	3.859(3)	103.3	3.856(3)	103.2	3.845(3)	102.6	3.774(4)	103.8
C123-H23DN120(2-x, 2-y, -z)	3.953(12)	119.6	3.924(11)	117.0	3.900(7)	114.0	3.874(3)	112.2	3.853(3)	111.7	3.809(3)	111.0	3.853(3)	114.6
C21-H21AO1	3.432(10)	161.9	3.430(9)	160.7	3.454(6)	161.4	3.465(3)	160.9	3.469(3)	161.1	3.463(3)	161.2	3.360(3)	160.8
C121-H21DO1A(1+x, 1+y, z)	3.551(11)	164.9	3.596(9)	158.4	3.627(6)	153.9	3.627(3)	151.2	3.633(3)	149.7	3.638(3)	148.3	3.613(3)	152.2
C21-H21AO4	3.499(11)	115.8	3.369(8)	113.0	3.337(6)	112.0	3.310(3)	111.4	3.300(3)	111.2	3.277(3)	110.8	3.475(3)	111.8
C121-H21DO4A(1+x, 1+y, z)	3.841(12)	123.7	3.906(10)	123.6	3.954(6)	121.8	3.986(3)	120.8	4.017(3)	120.4	4.103(3)	120.7	4.246(3)	123.0
C21-H21BO1A(x, 1+y, z)	3.739(10)	134.1	3.780(9)	136.3	3.767(6)	136.9	3.755(3)	137.3	3.732(3)	137.3	3.692(3)	137.3	3.635(3)	130.5
C121-H21CO1(1+x, y, z)	3.932(11)	130.5	4.173(10)	132.7	4.270(6)	134.0	4.315(3)	134.4	4.339(3)	134.3	4.371(3)	134.2	4.311(3)	123.2
C21-H21BO4A(x, 1+y, z)	3.441(9)	161.1	3.506(8)	166.8	3.497(6)	166.8	3.510(3)	168.7	3.504(3)	168.9	3.523(3)	170.0	3.467(3)	170.3
C121-H21CO4(1+x, y, z)	3.410(9)	149.9	3.470(8)	154.1	3.493(5)	156.9	3.501(3)	158.8	3.501(3)	159.4	3.490(3)	159.1	3.417(3)	151.1
C23-H23BO3(1-x, 1-y, 1-z)	3.366(14)	134.7	3.490(9)	144.8	3.517(6)	146.9	3.538(3)	149.1	3.546(3)	149.8	3.544(3)	151.1	3.515(3)	144.4
C123-H23DO2A(1-x, 1-y, -z)	3.296(15)	121.0	3.289(12)	120.0	3.283(7)	120.7	3.291(3)	121.1	3.288(3)	121.2	3.264(3)	121.4	3.289(3)	121.5
C1-H1BO3(x, 1+y, z)	3.203(9)	117.1	3.122(7)	119.1	3.125(5)	120.3	3.136(3)	121.0	3.130(2)	121.3	3.100(3)	122.1	3.074(3)	121.2
C31-H31BO2(1+x, y, z)	3.394(9)	144.7	3.434(8)	141.8	3.431(5)	141.5	3.432(3)	141.1	3.435(3)	140.5	3.424(3)	140.6	3.531(3)	139.5
C1-H1AO1A(x, 1+y, z)	3.720(9)	145.9	3.572(8)	146.3	3.501(5)	146.7	3.465(3)	147.2	3.456(3)	146.9	3.441(3)	146.6	3.627(3)	147.0
C31-H31BO1(1+x, y, z)	4.020(9)	144.7	4.047(8)	145.6	4.018(5)	145.8	3.984(3)	145.9	3.971(3)	145.8	3.960(3)	146.2	4.335(3)	144.7
C1-H1AO3A(x, 1+y, z)	3.352(9)	152.3	3.378(8)	149.7	3.372(6)	148.6	3.368(3)	148.0	3.355(3)	147.9	3.323(3)	147.0	3.341(3)	151.6
C31-H31BO3A(1+x, y, z)	3.906(11)	111.5	3.701(9)	110.3	3.646(6)	111.4	3.612(3)	111.9	3.595(3)	111.7	3.506(3)	111.3	3.502(3)	112.1
C2-H2BO3(x, 1+y, z)	3.452(9)	121.4	3.482(9)	116.7	3.504(6)	116.0	3.512(3)	116.2	3.514(3)	116.0	3.505(3)	114.6	3.422(3)	115.6
C32-H32BO2A(1+x, y, z)	3.564(8)	126.6	3.555(7)	125.3	3.556(5)	125.4	3.549(3)	125.3	3.540(3)	125.1	3.510(3)	124.1	3.601(3)	122.0
C3-H3BO3A(x, 1+y, z)	3.743(12)	136.1	3.809(11)	132.9	3.800(7)	132.1	3.774(4)	132.3	3.753(3)	132.4	3.760(4)	130.4	3.877(4)	131.2
C33-H33BO2(1+x, y, z)	3.386(8)	149.9	3.359(7)	152.8	3.357(5)	152.8	3.359(3)	151.9	3.357(2)	151.9	3.356(3)	151.9	3.405(3)	153.2
C11-H11AO1(1-x, 1-y, 1-z)	3.232(10)	127.2	3.140(9)	114.6	3.128(6)	110.3	3.123(3)	107.9	3.121(3)	107.0	3.107(3)	105.9	3.113(3)	110.7
C41-H41AO1A(1-x, 1-y, -z)	3.443(9)	150.5	3.448(9)	153.6	3.463(6)	154.8	3.456(3)	154.5	3.454(3)	153.9	3.446(3)	152.3	3.484(3)	110.0
C11 - H11AO2(1-x, 1-y, 1-z)	4.467(11)	127.1	4.655(9)	123.7	4.724(6)	122.6	4.765(3)	121.4	4.782(3)	121.3	4.784(3)	119.8	4.517(3)	126.8
C41-H41BO2A(1-x, 1-y, -z)	3.554(9)	112.1	3.528(9)	111.5	3.510(6)	111.1	3.472(3)	111.3	3.462(3)	111.8	3.457(3)	112.9	3.499(3)	151.1
C12-H12AO3A(1-x, 1-y, 1-z)	3.375(11)	115.9	3.463(9)	113.6	3.486(6)	111.9	3.526(3)	110.1	3.541(3)	109.0	3.582(3)	106.7	3.459(3)	113.0

C42-H42BO2(1-x, 1-y, -z)	3.534(12)	114.6	3.727(10)	113.1	3.806(6)	112.3	3.867(3)	110.7	3.891(3)	110.2	3.930(3)	109.4	3.857(3)	111.8
C42-H42BO3(1-x, 1-y, -z)	3.907(13)	159.2	3.647(9)	157.8	3.598(6)	156.5	3.568(3)	154.1	3.553(3)	153.2	3.527(3)	152.0	3.523(3)	155.6
C13-H13AO4A(1-x, 1-y, 1-z)	3.923(11)	109.0	3.832(9)	113.4	3.800(6)	114.5	3.769(3)	115.3	3.745(3)	115.9	3.627(3)	118.8	3.568(3)	117.3
C43-H43AO4	3.815(10)	152.0	3.933(8)	153.3	3.972(6)	153.1	4.001(3)	151.7	4.010(3)	151.0	4.020(3)	150.6	3.946(3)	154.2
C14-H14O1(1+x, y, z)	3.192(8)	157.8	3.203(8)	151.9	3.206(5)	150.4	3.207(3)	149.9	3.200(3)	149.6	3.177(3)	148.1	3.186(3)	155.4
C44-H44O1A(x, 1+y, z)	3.259(8)	162.6	3.264(7)	163.1	3.276(5)	163.1	3.279(3)	163.4	3.280(3)	163.7	3.265(3)	164.2	3.335(3)	165.8
C4-H4O2A(1+x, 1+y, z)	3.234(8)	134.7	3.193(7)	135.5	3.179(5)	133.8	3.164(3)	133.3	3.156(3)	132.7	3.140(3)	131.7	3.222(3)	131.4
C34-H34O4	3.228(7)	166.0	3.224(7)	163.7	3.230(5)	163.5	3.236(3)	164.3	3.237(3)	163.9	3.231(3)	164.5	3.254(3)	167.4
C4-H4O4A(1+x, 1+y, z)	3.240(7)	162.5	3.241(7)	158.5	3.234(5)	158.9	3.219(3)	158.1	3.212(3)	157.9	3.201(3)	157.4	3.239(3)	163.8
C34-H34O3	3.298(8)	134.4	3.265(8)	132.7	3.255(5)	132.2	3.248(3)	131.6	3.234(3)	131.7	3.208(3)	131.3	3.282(3)	133.7
C1-H1BN31(x, 1+y, z)	3.536(8)	149.7	3.550(8)	150.3	3.561(6)	149.2	3.552(3)	147.8	3.542(3)	147.2	3.520(3)	147.0	3.496(4)	143.9
C31-H31AN1(x, y-1, z)	3.535(8)	150.2	3.554(7)	148.7	3.573(5)	147.4	3.571(3)	146.6	3.567(3)	146.4	3.559(3)	144.7	3.521(3)	145.3
C14 - H14 - N11(2-x, 1-y, 1-z)	3.580(8)	75.9	3.569(8)	71.2	3.567(5)	69.4	3.578(3)	68.7	3.575(3)	67.9	3.561(3)	66.7	3.404(3)	73.8
C44 - H44 - N41(1-x, 2-y, -z)	3.851(8)	81.9	3.966(8)	81.0	3.997(5)	79.9	3.991(3)	79.5	3.973(3)	79.2	3.932(3)	78.3	3.761(3)	83.2

	250 K		200 K		160 K		100 K	
C3-H3B···N3	3.426(4)	112.6	3.417(3)	112.4	3.413(3)	112.1	3.406(3)	111.0
C4-H4…N13	3.674(4)	121.6	3.649(3)	121.5	3.513(3)	120.6	3.360(3)	120.0
C11-H11B…N11 ^j	3.550(3)	138.9	3.524(3)	139.1	3.517(3)	139.3	3.518(3)	139.9
C13-H13A…N13	3.466(3)	114.3	3.458(3)	114.4	3.448(3)	115.0	3.430(2)	115.6
C22-H22A····N1 ^{k}	3.563(4)	138.7	3.575(3)	138.8	3.636(3)	140.0	3.708(3)	141.4
C1-H1A…O4_\$1	3.605(13)	125.5	3.552(10)	124.7	3.527(8)	124.3	3.479(10)	123.7
C1-H1B…O1_\$2	3.236(11)	120.4	3.257(8)	120.6	3.241(7)	121.5	3.209(9)	121.4
C1-H1A···O3_\$2	3.504(12)	114.4	3.477(8)	112.9	3.441(6)	112.9	3.406(11)	112.3
C2-H2A…O4_\$1	3.455(12)	111.7	3.401(8)	112.2	3.363(7)	112.2	3.304(10)	112.4
C3-H3A…O4_\$1	3.488(12)	127.0	3.465(7)	125.4	3.428(6)	124.8	3.382(10)	123.0
C4-H4…O1_\$3	3.123(9)	149.6	3.111(5)	148.9	3.095(5)	146.5	3.079(8)	142.6
C11-H11A…O4_\$3	3.518(10)	167.7	3.527(6)	167.9	3.499(5)	169.0	3.506(9)	168.9
C11-H11B…O3_\$4	3.169(10)	119.5	3.197(8)	119.3	3.210(7)	118.3	3.197(11)	116.7
C12-H12A…O3_\$4	3.423(10)	120.3	3.454(8)	120.0	3.440(6)	121.2	3.402(12)	122.1
C13-H13B…O4_\$5	3.532(9)	152.9	3.532(6)	152.5	3.491(6)	152.5	3.446(9)	152.4
C14-H14…O2_\$6	3.337(10)	152.7	3.328(6)	152.7	3.285(5)	151.4	3.242(7)	152.5
C14-H14…O3_\$6	3.331(12)	137.6	3.317(8)	137.7	3.282(6)	136.0	3.249(11)	132.9
C21-H21A···O2_\$3	3.374(10)	115.2	3.346(5)	114.8	3.345(5)	117.2	3.338(7)	119.6
C21-H21A····O1_\$7	3.333(10)	134.2	3.301(6)	134.1	3.272(5)	132.6	3.259(7)	130.5
C21-H21A····O2_\$7	3.502(13)	117.5	3.519(12)	117.5	3.471(9)	117.6	3.384(12)	118.3
C1-H1A…O14_\$1	3.271(18)	119.8	3.210(15)	119.3	3.235(15)	120.3	3.29(3)	122.3
C1-H1B…O11_\$2	3.65(2)	131.3	3.67(2)	131.2	3.608(16)	131.8	3.47(3)	128.9
C1-H1B…O14_\$2	3.351(18)	123.4	3.323(17)	123.7	3.329(15)	126.2	3.37(2)	131.4
C2-H2B…O14_\$1	3.202(18)	116.6	3.140(17)	116.0	3.153(15)	115.4	3.19(3)	114.2
C3-H3B…O12_\$7	3.319(18)	140.6	3.269(19)	141.0	3.279(15)	141.3	3.37(3)	144.3
C3-H3A…O14_\$1	3.515(17)	116.5	3.467(16)	115.6	3.450(14)	116.5	3.43(2)	118.0
C4-H4…O11_\$3	3.195(16)	154.7	3.189(15)	153.2	3.146(13)	152.1	3.07(2)	146.7
C11-H11A…O14_\$3	3.601(19)	170.4	3.589(19)	171.2	3.520(14)	172.6	3.45(2)	173.9
C11-H11B…O13_\$4	3.641(19)	119.8	3.57(3)	118.0	3.577(18)	117.7	3.47(3)	117.7
C14-H14…O12_\$6	3.322(19)	142.0	3.278(14)	141.5	3.270(12)	141.0	3.239(19)	144.5
C14-H14…O13_\$6	3.38(2)	148.1	3.36(2)	145.7	3.302(16)	144.1	3.24(3)	139.1
C21-H21A…O11_\$7	3.466(19)	144.7	3.429(16)	144.6	3.404(13)	143.0	3.31(2)	138.5
C21-H21B…O12_\$3	3.384(18)	113.1	3.376(15)	112.4	3.356(13)	110.4	3.32(2)	112.8

Table S4. Selected C-H...N and C-H...O interatomic contacts [Å] and angles [°] for **2**.

^j-1-x,1-y,1-z; ^k1-x,-y,-z; \$1 x, y-1, z-1; \$2 -x, -y+1, -z; \$3 x, y-1, z; \$4 -x, -y+1, -z+1; \$5 -x, -y+2, -z+1; \$6 x-1, y, z; \$7 -x+1, -y+1, -z;

	260 K	240 K	220 K	200 K	190 K	180 K	170 K	160 K	150 K	140K	120K
Fe-N4	2.1589(19)	2.1543(18)	2.1410(18)	2.1194(17)	2.0973(17)	2.0683(18)	2.0409(17)	2.0073(49)	1.9883(44)	1.9770(33)	1.9720(18)
Fe-N14	2.1846(20)	2.1788(18)	2.1668(18)	2.1408(17)	2.1190(17)	2.0876(18)	2.0588(17)	2.0406(50)	2.0123(46)	2.0028(32)	1.9911(18)
Fe-N20	2.1510(22)	2.1450(19)	2.1331(19)	2.1043(19)	2.0794(19)	2.0430(19)	2.0092(18)	1.9874(52)	1.9594(47)	1.9387(34)	1.9339(18)
Fe-N34	· · · ·		· · · ·					2.0150(50)	1.9865(46)	1.9771(33)	1.9754(18)
Fe-N44								2.0406(50)	2.0121(45)	2.0066(32)	1.9928(18)
Fe-N120								1.9813(54)	1.9531(48)	1.9492(34)	1.9418(18)
Fe-N20-C20	176.26 (22)	176.50(20)	176.62(19)	176.54(19)	176.28(18)	176.04(19)	175.83(18)	175.39(55)	175.05(49)	174.15(34)	173.55(18)
Fe-N120-C120	~ /	~ /	× /	. ,			. ,	176.52(51)	176.65(46)	175.90(33)	175.42(17)
N4-Fe-N4 ^a	180.0	180.0	180.0	180.0	180.0	180.0	180.0	179.74(19)	179.32(18)	179.32(13)	179.33(7)
N14-Fe-N14	180.0	180.0	180.0	180.0	180.0	180.0	180.0	179.35(19)	179.35(18)	179.76(13)	179.87(8)
N4-Fe-N14	87.69(7)	87.70(7)	87.78(7)	87.79(6)	87.77(6)	87.79(7)	87.72(7)	87.39(19)	87.34(18)	87.75(13)	87.84(7)
N4-Fe-N44	~ /				~ /	~ /	~ /	91.97(19)	92.00(18)	92.03(13)	92.06(7)
N4-Fe-N20	89.83(7)	89.90(7)	89.89(7)	89.79(7)	89.86(6)	89.79(7)	89.82(7)	89.3(2)	88.91(19)	88.80(13)	88.77(7)
N4-Fe-N120	()	~ /	()	~ /	()	× /		90.0(2)	90.20(18)	90.23(13)	90.10(7)
N14-Fe-N20	91.84(8)	91.90(7)	91.98(7)	91.90(7)	91.81(7)	91.67(7)	91.65(7)	91.4(2)	92.02(19)	91.82(13)	91.81(7)
N14-Fe-N120	~ /				~ /	~ /	~ /	88.38(19)	88.00(19)	88.06(13)	88.12(7)
N11-N12-C11-C12	70.82(33)	70.88(31)	70.42(30)	70.66(28)	70.24(28)	70.35(28)	70.24(28)	71.76(81)	73.67(71)	74.55(50)	75.14(27)
N12-C11-C12-C13	65.84(34)	65.62(31)	66.00(30)	65.93(29)	66.16(28)	65.76(29)	65.80(28)	67.21(86)	69.10(76)	70.09(52)	71.03(27)
C11-C12-C13-C13 ^b	175.82(30)	175.77 (28)	175.93(27)	175.94(26)	176.08(25)	175.93(25)	175.80(25)	174.83(74)	176.63(66)	176.66(46)	176.42(24)
N41-N42-C41-C42			× /	. ,			. ,	-69.18(78)	-68.84(74)	-68.87(53)	-69.57(28)
N42-C41-C42-C43								-65.52(80)	-66.18(73)	-66.80(52)	-67.77(27)
C41-C42-C43-C43 ^c								-174.35(75)	-174.15(66)	-174.12(46)	-173.82(25)
N1-N2-C1-C2	-67.43(28)	-67.29(26)	-66.79(25)	-66.71(24)	-66.75(24)	-67.25(24)	-67.87(24)	-70.59(73)	-72.77(72)	-72.86(50)	-71.73(27)
N2-C1-C2-C3	-58.10(29)	-57.89(26)	-57.63(26)	-57.40(24)	-57.51(24)	-57.56(24)	-57.56(23)	-56.39(78)	-54.21(86)	-54.69(59)	-56.41(30)
C1-C2-C3-C3 ^d	-178.89(28)	-179.27(25)	-179.15(25)	-178.76(23)	-178.65(23)	-178.48(23)	-178.07(23)	-177.64(71)	-179.27(78)	-178.16(54)	-178.15(28)
N31-N32-C31-C32								68.69(68)	67.59(63)	66.87(46)	66.85(25)
N32-C31-C32-C33								57.70(64)	56.95(60)	57.27(44)	57.00(24)
C31-C32-C33-C33 ^e								176.32(59)	176.23(54)	176.10(39)	176.73(22)
Fe-Fe ^f	13.1029(28)	13.1011(18)	13.0857(12)	13.0717(6)	13.0473(5)	13.0109(5)	12.9721(6)	12.8874(19)	12.8196(17)	12.7937(12)	12.7904(6)
Fe-Fe ^g								13.0718(20)	13.1774(17)	13.2338(12)	13.2746(7)
Fe-Fe ^h	12.1531(30)	12.1530(18)	12.1477(13)	12.1454(6)	12.1381(5)	12.1246(5)	12.1085(6)	12.2151(20)	12.2969(17)	12.3439(13)	12.4026(7)
Fe-Fe ⁱ								12.0149(20)	11.9776(17)	11.9749(13)	11.9802(7)
$N4\cdots N4^{h}$	9.6097(44)	9.6063(37)	9.5975(34)	9.5933(32)	9.5987(32)	9.5954(33)	9.5944(32)	9.6685(94)	9.7069(86)	9.7527(65)	9.8087(35)
N34N34 ^{<i>i</i>}								9.5244(96)	9.5002(88)	9.4843(63)	9.4739(35)
N14···N14 ^f	10.0884(41)	10.0948(36)	10.0993(35)	10.1190(33)	10.1192(33)	10.1257(33)	10.1217(33)	10.1097(97)	10.1157(88)	10.1315(63)	10.1590(34)
N44N44 ^g	. ,		. ,		. ,	. /	. ,	10.2027(100)	10.3119(86)	10.3606(64)	10.4216(34)
PlFe1	8.0302	8.0090	7.9860	7.9603	7.9501	7.9416	7.9353	8.0717(22)	8.1103(19)	8.0935(14)	8.0601(7)
PlFe1 ^a								7.8868(15)	7.8494(11)	7.8272(8)	7.8080(4)

Table S5. Selected Fe-N distances (Å), N-Fe-N and Fe-N-C angles (°), torsion angles (°), Fe-...Fe interatomic distances and distances between nitrogen donor atoms (Å) for **1** in cooling mode.

^{*a*} 1-x,1-y,1-z; ^{*b*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*c*} 1-x, 1-y, -z; ^{*d*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*g*} 1-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, -z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y; ^{*k*} -x, 1-

Continued Table S5 (cooling mode)

	100K	15K	15K(LIESST)
Fe-N4	1.9725(17)	1.9730(19)	2.1610(21)
Fe-N14	1.9901(17)	1.9906(20)	2.1882(21)
Fe-N20	1.9330(17)	1.9333(22)	2.1453(26)
Fe-N34	1.9709(17)	1.9745(19)	2.1630(21)
Fe-N44	1.9923(17)	1.9924(19)	2.1919(21)
Fe-N120	1.9399(17)	1.9417(23)	2.1594(27)
Fe-N20-C20	173.44(16)	173.69(18)	176.83(21)
Fe-N120-C120	175.32(16)	175.40(18)	176.28(20)
N4-Fe-N4 ^a	179.30(7)	179.17(8)	178.50(9)
N14-Fe-N14	179.91(7)	179.93(9)	178.50(8)
N4-Fe-N14	87.86(7)	87.83(8)	87.06(8)
N4-Fe-N44	92.05(7)	92.14(8)	91.76(8)
N4-Fe-N20	88.71(7)	88.65(8)	88.37(8)
N4-Fe-N120	90.03(7)	90.14(8)	89.65(8)
N14-Fe-N20	91.74(7)	91.79(8)	91.36(8)
N14-Fe-N120	88.11(7)	88.11(8)	87.75(8)
N11-N12-C11-C12	75.29(24)	75.31(26)	71.63(29)
N12-C11-C12-C13	71.76(24)	73.46(25)	70.77(28)
C11-C12-C13-C13 ^b	176.48(22)	177.97(23)	-179.42(26)
N41-N42-C41-C42	-69.79(25)	-69.78(27)	-70.63(30)
N42-C41-C42-C43	-68.01(25)	-67.95(25)	-64.72(29)
C41-C42-C43-C43 ^c	-174.00(22)	-173.71(24)	-173.90(26)
N1-N2-C1-C2	-70.98(24)	-70.41(29)	-62.20(31)
N2-C1-C2-C3	-57.11(25)	-56.14(33)	-57.09(33)
C1-C2-C3-C3 ^d	-177.74(23)	-178.86(29)	179.74(30)
N31-N32-C31-C32	66.71(23)	65.45(27)	62.33(29)
N32-C31-C32-C33	56.61(22)	56.14(26)	55.60(29)
C31-C32-C33-C33 ^e	176.86(20)	176.63(24)	178.16(27)
Fe-Fe ^f	12.7908(6)	12.7741(7)	13.0546(8)
Fe-Fe ^g	13.2839(6)	13.2825(7)	13.3520(8)
Fe-Fe ^h	12.4192(6)	12.4000(7)	12.4895(9)
Fe-Fe ⁱ	11.9740(6)	11.9350(7)	11.8504(9)
$N4 \cdots N4^{h}$	9.8230(32)	9.8009(38)	9.8150(43)
N34N34 ^{<i>i</i>}	9.4650(32)	9.4165(38)	9.3499(42)
N14…N14	10.1656(32)	10.1610(39)	10.1378(41)
N44N44 ^g	10.4354(32)	10.4440(39)	10.2420(41)
PlFe1	8.0292(7)	7.9692(7)	8.0977(9)
PlFe1 ^a	7 7886(4)	7 7461(4)	7 8177(5)

^{*a*} 1-x,1-y,1-z; ^{*b*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*c*} 1-x, 1-y, -z; ^{*d*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*g*} 1-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, -z; ^{*h*}

Table 1 120 K 140 K 150 K 160 K 170 K 180 K 190 K 200 K 220 V	X 240K
Fe-N4 19718(18) 19771(31) 19908(51) 2.0155(55) 2.0414(17) 2.0693(17) 2.0958(17) 2.1204(17) 2.14	59(17) 2.1557(18)
Fe-N14 1.9913(18) 1.9993(31) 2.0158(52) 2.0474(55) 2.0574(17) 2.0887(17) 2.1168(17) 2.1416(17) 2.16	59(17) 2.1781(18)
Fe-N20 19347(18) 19402(31) 19543(52) 19765(56) 20107(18) 20443(19) 20784(19) 21018(19) 213	3(19) $2.1442(19)$
Fe-N34 19739(18) 19832(31) 19909(51) 2.0107(56)	
F_{e} -N44 19915(18) 20017(31) 20095(52) 20412(58)	
Fe-N120 $19424(18) = 19458(32) = 19514(55) = 19748(58)$	
Fe-N20-C20 173 53(8) 173 79(32) 174 47(53) 175 00(60) 175 81(18) 176 12(19) 176 41(19) 176 49(18) 176 1	76(19) 176 35(20)
Fe-N(2)-C(2) 175 51(17) 175 89(30) 177 01(54) 176 43(56)	0(1)) 1/0.55(20)
N4-Fe-N4 ^{<i>a</i>} 179.23(7) 179.29(12) 179.34(19) 179.2(2) 180.0 180.) 180.0
1792(3) $1795(3)$ $1796(13)$ $17947(19)$ $1792(2)$ 1800 1800 1800 1800 1800) 180.0
17.1(1) $17.2(2)$ $17.1(1)$ $17.2(2)$ $10.1(2)$ 10.1	7(6) 87 78(7)
N4-Fe-N4 92 07(7) 92 01(13) 92 1(2) 92 4(2)	
N_{4} -Fe-N20 88 68(7) 88 85(13) 89 0(2) 89 4(2) 89 77(6) 89 73(7) 89 79(6) 89 82(6) 89 8	1(7) 89.80(7)
N4-Fe-N120 90.18(7) 90.19(13) 90.4(2) 90.2(2)	
N14-E-N20 9170(7) 9176(12) 919(2) 913(2) 9164(7) 9169(7) 9179(7) 9183(6) 919	5(7) 91.85(7)
N14-Fe-N120 88 17(7) 88 13(12) 87 9(2) 88 5(2)	(1) (1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R(29) = 70.71(31)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(30) = 65.84(31)
$\begin{array}{c} (11-(12-(13-(13^{b}) - 176(57/24) - 176(58/43) - 176(54/73) - 174(70(84) - 176(12/24) - 175(57/25) - 176(57/25) - 175(57/25) - 176(57/25) - 1$	16(27) $175 77(28)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10(27) 175.77(20)
$M_1 = M_1 = M_2 = M_1 = M_2 $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$N_{1} N_{2} C_{1} C_{2} = -71.39(77) - 72.60(48) - 72.41(82) - 71.44(82) - 67.96(23) - 67.47(24) - 67.08(24) - 66.78(24) - 6$	-67 39(26)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50(25) $-57.69(27)$
$\begin{array}{cccccccccccc} \hline & & & & & & & & & & & & & & & & & & $	04(24) -179 $03(25)$
(12.63-C3)-C3) = (17.56(27) +	04(24) 179.05(25)
$N_{32}(3_1, C_{32}) = (C_{33}) $	
$C_{31}-C_{32}-C_{32}=1769(22)$ $7.653(38)$ $17641(62)$ $17672(66)$	
$F_{P_{2}}F_{P_{1}} = \int (12,79)^{2} (12,7$	951(6) 13.0955(14)
$F_{e-Fes} = 13.2745(7) - 13.2777(12) - 12.6777(16) - 12.6977(17) - 12.5777(16) - 12.6775(16) - 15.6755(16) - 15.6755(16) - 15.6755(17) - 15.$	15.0755(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	525(6) 12 1561(15)
$F_{e-}F_{e-}^{e-i}$ (1) 976((12) (1) 978((18) (1) 20139(19) (12.1055(5) (12.1252(5) (12.1355(5))))))))))))))))))))))))))))))))))	12.1301(13)
112.012(17) $112.001(17)$ $112.012(17)$	30(33) 9.6032(36)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0(55)).0052(50)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 0949(36)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0747(50)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 8 0118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table S5. Selected Fe-N distances (Å), N-Fe-N and Fe-N-C angles (°), torsion angles (°), Fe...Fe interatomic distances and distances between nitrogen donor atoms (Å) for **1** in heating mode.

^{*a*} 1-x,1-y,1-z; ^{*b*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*c*} 1-x, 1-y, -z; ^{*d*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, 2-y, 1-z (superstructure); ^{*i*}

Continued Table 55 (heating mode)	Continued Table S5 (he	eating mode)
-----------------------------------	------------------------	--------------

Table 1	260K	280 K	300 K
Fe-N4	2.1632(18)	2.1671(19)	2.1677(20)
Fe-N14	2.1852(19)	2.1884(19)	2.1902(21)
Fe-N20	2.1485(20)	2.1539(21)	2.1542(22)
Fe-N34			
Fe-N44			
Fe-N120			
Fe-N20-C20	176.40(21)	176.13(22)	175.91(24)
Fe-N120-C120			
N4-Fe-N4 ^a	180.0	180.0	180.0
N14-Fe-N14	180.0	180.0	180.0
N4-Fe-N14	87.76(7)	87.68(7)	87.69(8)
N4-Fe-N44			
N4-Fe-N20	89.81(7)	89.79(7)	89.82(8)
N4-Fe-N120			
N14-Fe-N20	91.75(7)	91.71(8)	91.71(8)
N14-Fe-N120			
N11-N12-C11-C12	70.82(32)	70.48(34)	70.56(37)
N12-C11-C12-C13	65.78(33)	66.02(34)	66.08(38)
C11-C12-C13-C13 ^b	175.82(29)	175.45(31)	175.53(34)
N41-N42-C41-C42			
N42-C41-C42-C43			
C41-C42-C43-C43 ^c			
N1-N2-C1-C2	-67.82(27)	-68.59(28)	-68.90(30)
N2-C1-C2-C3	-58.07(28)	-58.02(29)	-58.59(32)
C1-C2-C3-C3 ^d	-178.97(27)	-178.90(29)	-179.30(31)
N31-N32-C31-C32			
N32-C31-C32-C33			
C31-C32-C33-C33 ^e			
Fe-Fe ^f	13.0974(17)	13.1006(19)	13.1014(22)
Fe-Fe ^g			
Fe-Fe ^h	12.1561(18)	12.1603(21)	12.1650(24)
Fe-Fe ⁱ			
$N4 \cdots N4^{h}$	9.6056(39)	9.6128(40)	9.6202(44)
N34N34 ^{<i>i</i>}			
N14…N14 ^f	10.0891(37)	10.0832(39)	10.0818(42)
N44N44 ^g			
PlFe1	8.0357	8.0584	8.0752
PlFe1 ^a			

^{*a*} 1-x,1-y,1-z; ^{*b*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*c*} 1-x, 1-y, -z; ^{*d*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*e*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 2-x, 2-y, 1-z (superstructure); ^{*g*} 1-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x,1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y,-z; ^{*f*} 1-x, -y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z (average) / 1-x, 2-y, 1-z (superstructure); ^{*i*} 2-x, 1-y, -z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, 2-z; ^{*h*} -x, 1-y, -z; ^{*h*}

Intermolecular contacts involving =CH- and -CH₂- groups of allyl cyanide in 1.

There is only one very distant contact C22-H22...N11(1+x,-1+y,z) established between =CH– group of bent conformer and tetrazole ring of neighboring layer which remains in the range 3.6-3.75Å (280–170 K). Both types of conformers interact with perchlorate anions through -CH₂– groups. Finally perchlorate anions form C4-H4...O4(ClO₄-) contacts with tetrazole rings. Unfortunately, because of severe disordering of both allyl cyanide molecules and perchlorate anions more detailed discussion of intermolecular contacts is not possible.

Intramolecular contact within polymeric layer in 2.

Figure S1. Drawing showing C-H...N contacts established within polymeric layer (black dotted lines) in **2**.

A comparison of changes of rhombic windows dimensions in 1 and 2.

In **2**, SCO involves shrinkage of the rhombic window formed within polymeric layer. In the temperature range 250 and 150 K, the smaller diagonal (established between the corner iron atoms) decreases from 10.42 to 10.34 Å whereas the larger one decreases from 22.23 to 21.63 Å. These alterations are very similar to those noticed in acetonitrile analog, in which corresponding diagonals are reduced from 10.32 to 10.22 and 22.37 to 21.82 Å, in the same temperature range. A presence of larger allyl cyanide molecules in **1** causes that the deformation of rhombic window does not correspond to the one observed in acetonitrile and propionitrile analogs. Thus, the smaller diagonal is reduced at the similar extent (10.36 at 260 K, 10.24 at 160 K, 10.18 at 150 K and 10.13 at 120 K) but the longer diagonal slightly increases at lower temperatures (23.02 at 260K, 22.91 K at 160 K, 22.97 at 150 K and 23.09 at 120 K).

a)

b)

Figure S2. Temperature dependence of distances between Fe(II) ions bridged in [1-11] (a) and [001] (b) directions in 1.

Temperature [K]

Selected intermolecular distances in 1.

Figure S3. Alteration of selected intermolecular distances related to formation of superstructure in 1.

The temperature dependence of the lattice parameters.

Figure S4. Temperature dependence of the lattice parameters for complex 1 (blue upsidedown triangle: on cooling; red triangle: on heating; black square: after laser irradiation).

The intensity of the superstructure reflections.

Figure S5. Temperature dependence of the intensity of the selected superstructure reflections for compound **1** (upside-down triangle: on cooling; triangle: on heating).

Corrugation of the polymeric layers in 1.

b)

a)

Figure S6. Corrugation of the polymeric layers in 1.