Supporting Information

Lipophilic $M(\alpha, \alpha'-OC_5H_{11})_8$ Phthalocyanines (M = H₂ and Ni(II)): Synthesis, Electronic Structure, and its Utility for Applications on Highly Efficient Carbonyl Reduction

Yu Jiang,^a Minzhi Li,^a Xu Liang,^{a*} John Mack, ^{b*} Martin Wildervanck,^b Tebello Nyokong,^b Mingfeng Qin^a, Weihua Zhu^{a*}

School of Chemistry and Chemical Engineering, JiangSu University, Zhenjiang 213200, P. R. China. Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.

Corresponding author: Prof. Dr. Weihua Zhu, E-mail: <u>sayman@ujs.edu.cn</u>, Tel: +86-511-8879-1928; Dr. Xu Liang, E-mail: liangxuujs@126.com, Tel: +86-511-8879-1928; Dr. John Mack: <u>j.mack@ru.ac.za</u>

Figure S1. ¹HNMR spectra of H₂-Pc 2 (up) and Ni(II)Pc 3a (bottom) in CD₂Cl₂.

Table S1. TD-DFT spectra of the B3LYP optimized geometries of **2** and **3a** calculated with the CAM-B3LYP functional and 6-31G(d) basis sets.

2							
Band ^a	# ^b	Calc ^c			Exp ^d		Wavefunction= ^e
	1						Ground state
Q	2	14.9	669	(0.60)	12.9	778	95% a → -s; 4% s → -a;
Q	3	15.4	651	(0.46)	13.7	730	89% a \rightarrow -a; 10% s \rightarrow -s;

B1	8	26.6	376	(0.26)	23.4	428	50% H23 (1b _{1u}) \rightarrow -s; 17% s \rightarrow -a;
D 1	10	20.4	240	(0.02)	247	405	68% HD3 (1b _{1u}) \rightarrow -s; 13% HD2 (1e _g)
DI	15	29.4	540	(0.02)	24.7	405	→ -a;
D 2	21	22 E	200	(0.26)	20.0	334	40% s → -a; 27% H⊡5 (2a _{1u}) → -s; 19%
ΒZ	21	55.5	299	(0.20)	29.9		$H \textcircled{B} 6^{N} (\mathbf{1b}_{2g}^{N}) \rightarrow -s;$
							19% H⊡16 → -s; 16% H⊡5 (2a _{1u}) → -a;
B2	23	34.5	290	(0.15)	32.7	306	13% H⊡8 (2a _{2u}) → -s;
							10% H⊡6 ^N (1b _{2g} ^N) → -s; 8% s → -s;
•							
3a							
3a Band ^a	# ^b	Calc ^c			Exp ^d		Wavefunction= ^e
3a Band ^a	# ^b	Calc ^c			Exp ^d		Wavefunction= ^e Ground state
Band ^a	# ^b 1 2	Calc ^c 14.8	 675	 (0.51)	Exp ^d 13.3	 754	Wavefunction= ^e Ground state 95% a \rightarrow -s; 3% s \rightarrow -a;
3a Band ^a Q Q	# ^b 1 2 3	Calc ^c 14.8 15.3	 675 654	 (0.51) (0.47)	Exp ^d 13.3 13.7	 754 731	Wavefunction= ^e Ground state 95% a \rightarrow -s; 3% s \rightarrow -a; 95% a \rightarrow -a; 4% s \rightarrow -s;
3a Band ^a Q Q	# ^b 1 2 3	Calc ^c 14.8 15.3	 675 654	 (0.51) (0.47)	Exp ^d 13.3 13.7	 754 731	Wavefunction= ^e Ground state 95% a \rightarrow -s; 3% s \rightarrow -a; 95% a \rightarrow -a; 4% s \rightarrow -s; 25% s \rightarrow -s; 16% $d_{z2} \rightarrow$ -s; 12% HDS
3a Band ^a Q Q B1	# ^b 1 2 3 23	Calc ^c 14.8 15.3 31.7	 675 654 315	 (0.51) (0.47) (0.24)	Exp ^d 13.3 13.7 29.7	 754 731 337	Wavefunction= ^e Ground state 95% $a \rightarrow -s$; $3\% s \rightarrow -a$; 95% $a \rightarrow -a$; $4\% s \rightarrow -s$; 25% $s \rightarrow -s$; $16\% d_{z2} \rightarrow -s$; 12% H25 $(2e_g) \rightarrow -a$;
Band ^a Q Q B1	# ^b 1 2 3 23	Calc ^c 14.8 15.3 31.7	 675 654 315	 (0.51) (0.47) (0.24)	Exp ^d 13.3 13.7 29.7	 754 731 337	Wavefunction= ^e Ground state 95% $a \rightarrow -s; 3\% s \rightarrow -a;$ 95% $a \rightarrow -a; 4\% s \rightarrow -s;$ 25% $s \rightarrow -a; 16\% d_{z2} \rightarrow -s; 12\% H25$ (2e _g) $\rightarrow -a;$ 27% $s \rightarrow -a; 17\% H29 (3e_g) \rightarrow -s; 15\%$

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c – Calculated band energies (10^3 .cm⁻¹), wavelengths (nm) and oscillator strengths in parentheses (f). d – Observed energies (10^3 .cm⁻¹) and wavelengths (nm) in **Figure 1**. e – The wave functions based on the eigenvectors predicted by TD-DFT. One-electron transitions associated with Michl's perimeter model are highlighted in bold. H and L refer to the HOMO and LUMO, respectively, while N refers to \square -MOs associated primarily with the lone pairs of the aza-nitrogens, and A and B refer to the \square - and \square -spin electrons. When the H and L nomenclature is used the symmetry label for the corresponding MO in the π -systems of D_{4h} MPc complexes is provided in parentheses where applicable.