Supporting information

Na⁺ diffusion kinetics in nanoporous metal-hexacyanoferrates by Takachi Masamitsu¹, Yuya Fukuzumi¹, and Yutaka Moritomo^{*1,2,3}

¹Graduate School of Pure & Applied Science, University of Tsukuba ²Faculty of Pure & Applied Science, University of Tsukuba ³Center for Integrated Research in Fundamental Science and Engineering (CiRfSE), University of Tsukuba

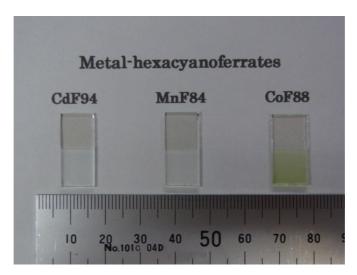


Fig. S1: Pictures of CoF88, MnF84, and CdF94 films on ITO transparent electrodes.

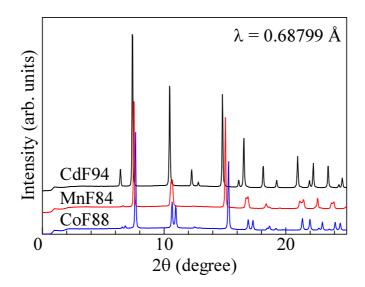


Fig. S2: X-ray powder diffraction patterns of as-grown CoF88, MnF84, and CdF94 films. The films were carefully removed from the ITO glass substrate with a microspatula, and then fine powders were used to fill 300µm¢ glass capillaries. X-ray wavelength was 0.68799 Å. Experiments were performed at BL8B of Photon Factory. In MnF84 and CoF88, all the reflections can be indexed in the hexagonal (R<u>3</u>m; *Z*=12) setting. In CdF94, all the reflections can be indexed in the face-centered cubic (Fm<u>3</u>m; *Z*=4) setting. The lattice constants were determined by Rietveld analysis: $a_{\rm H}/\sqrt{2}$ =10.515(1) Å and $c_{\rm H}/\sqrt{3}$ =10.085(1) Å for CoF88 (*x*= 1.52), $a_{\rm H}/\sqrt{2}$ =10.603(1) Å and $c_{\rm H}/\sqrt{3}$ =10.429(2) Å for MnF84 (*x*= 1.36), and *a*=10.7068(9) Å for CdF94 (*x*= 1.76).

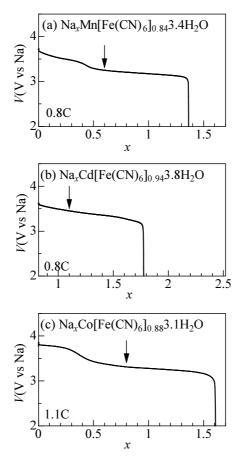


Fig. S3: Discharge curves of (a) MnF84, (b) CdF94, and (c) CoF88 films in propylene carbonate (PC) containing 1M NaClO₄ against Na metal. The redox reactions are as follows: (a) $1.36Na^+ + Mn^{II}_{0.52}Mn^{II}_{0.48}$ [Fe^{III}(CN)₆]_{0.84} \Rightarrow Na⁺ + Na_{0.36}Mn^{II}[Fe^{III}(CN)₆]_{0.84} \Rightarrow Na_{1.36}Mn^{II}[Fe^{III}(CN)₆]_{0.84}, (b) $0.94Na^+ + Na_{0.82}Cd^{II}$ [Fe^{III}(CN)₆]_{0.94} \Rightarrow Na_{1.76}Cd^{II}[Fe^{III}(CN)₆]_{0.94}, (c) $1.52Na^+ + Co^{III}$ [Fe^{III}(CN)₆]_{0.52}[Fe^{III}(CN)₆]_{0.48} \Rightarrow Na⁺ + Na_{0.52}Co^{III}[Fe^{III}(CN)₆]_{0.88} \Rightarrow Na_{1.52}Co^{III}[Fe^{III}(CN)₆]_{0.88}. Arrows indicated the position where electrochemical impedance spectra were measured.

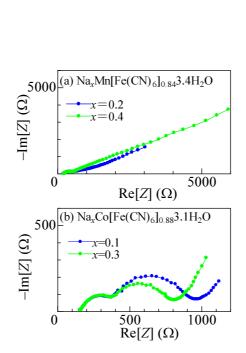


Fig. S4: Electrochemical impedance spectra (EIS) of (a) MnF84 and (b) CdF94 films in propylene carbonate (PC) containing 1M NaClO₄ against Na metal.

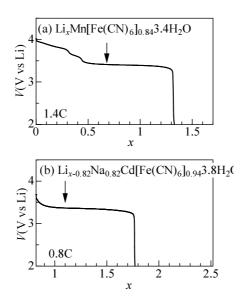


Fig. S5: Discharge curves of (a) MnF84 and (b) CdF94 films in ethylene carbonate (EC) / diethyl carbonate (DEC) containing 1M LiClO₄ against Na metal. The redox reactions are as follows: (a) $1.36Li^{+} + Mn^{II}_{0.52}Mn^{II}_{0.48}$ [Fe^{III}(CN)₆]_{0.84} \Rightarrow Li⁺ + Li_{0.36}Mn^{II}[Fe^{III}(CN)₆]_{0.84} \Rightarrow Li_{1.36}Mn^{II}[Fe^{III}(CN)₆]_{0.84}, (b) 0.94Li⁺ + Na_{0.82}Cd^{II}[Fe^{III}(CN)₆]_{0.94} \Rightarrow Li_{0.94} Na_{0.82}Cd^{II}[Fe^{III}(CN)₆]_{0.94}. Arrows indicated the position where electrochemical impedance spectra were measured.

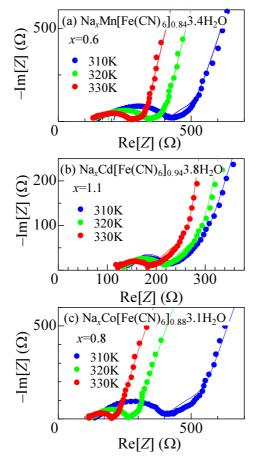


Fig. S6: Temperature dependence of the EIS curves of (a) MnF84, (b) CdF94 and (c) CoF88 films in PC containing 1M NaClO₄ against Na metal. Solid curves are results of the least-squares fittings with the Randles equivalent circuit model.

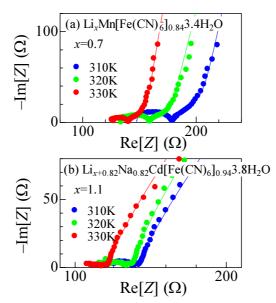


Fig. S7 Temperature dependence of the EIS curves of (a) MnF84 and (b) CdF94 films in ethylene carbonate (EC) / diethyl carbonate (DEC) containing 1M LiClO₄ against Li metal. Solid curves are results of the least-squares fittings with the Randles equivalent circuit model.

film	x	$f_{\rm c}({\rm s}^{-1})$	$D (\mathrm{cm}^2/\mathrm{s})$	$E_{a}\left(\mathrm{eV}\right)$
MnF84	0.6	0.10	2.3×10^{-10}	0.22
CdF94	1.1	0.19	7.7×10^{-10}	0.12
CoF88	0.8	0.05	$0.5 imes 10^{-10}$	0.86

Table. S1 Critical frequency (f_c) at 305 K, Na⁺ diffusion constant (D) at 305 K, and activation energy (E_a) of D of MnF84, CdF94, and CoF88. Note that D was determined by the lease-squares fitting of the EISs, not from f_c x is the Na concentration.

film	x	$f_{\rm c}({\rm s}^{-1})$	$D (\mathrm{cm}^{2}/\mathrm{s})$	$E_{\rm a}({\rm eV})$
MnF84	0.7	0.19	4.6×10^{-10}	0.48
CdF94	1.1	1.16	3.5×10 ⁻⁹	0.25

Table. S2 Critical frequency (f_c) at 305 K, Li⁺ diffusion constant (*D*) at 305 K, and activation energy (E_a) of *D* of MnF84 and CdF94. Note that D was determined by the lease-squares fitting of the EISs, not from f_c *x* is the Li concentration.