Electronic Supplementary Information (ESI)

for

A chiral lanthanide metal-organic framework for selective sensing of Fe(III) ion

Xiao-Lin Zhao, Dan Tian, Qiang Gao, Hong-Wei Sun, Jian Xu* and Xian-He Bu

School of Materials Science and Engineering, School of Chemistry, TKL of Metal- and Molecule-based Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China

Corresponding author Email: jxu@nankai.edu.cn

Tb-O1	2.4443	Tb-O2	2.4514
Tb-O3	2.2963	Tb-O4	2.3556
Tb-O5	2.4141	Tb-O6	2.5334
Tb-O7	2.3049	Tb-O8	2.3717
O1-Tb-O2	52.529	O1-Tb-O3	132.454
O1-Tb-O4	77.330	01-Tb-O5	97.760
O1-Tb-O6	77.462	01-Tb-O7	148.728
O1-Tb-O8	78.816	O2-Tb-O3	82.039
O2-Tb-O4	77.545	O2-Tb-O5	71.349
O2-Tb-O6	96.189	O2-Tb-O7	151.771
O2-Tb-O8	128.719	O3-Tb-O4	80.087
O3-Tb-O5	77.090	O3-Tb-O6	126.400
O3-Tb-O7	78.574	O3-Tb-O8	134.790
O4-Tb-O5	143.450	O4-Tb-O6	152.149
O4-Tb-O7	118.496	O4-Tb-O8	76.821
O5-Tb-O6	52.548	O5-Tb-O7	84.385
O5-Tb-O8	138.472	O6-Tb-O7	79.400
O6-Tb-O8	86.851	07-Tb-O8	79.185

 Table S1 Some selected Bond Lengths (Å) and Angles (°).

Table 2 The amounts of Tb^{3+} and Fe^{3+} ions in filter cake after washing treatment.

	Tb	Fe
In filter cake	28.9 (%)	0.18 (%)

Fig. S1 The coordination environment of binuclear Tb_2 SBU.

Fig. S2 The 4,8-connected net topology of compound 1 when viewing along the c axis.

Fig. S3 The IR data for compound 1.

Fig. S4 The TGA curves of compound **1**. a) The TGA curve of the crystal sample exchanged with ethanol. b) The TGA curve of the crystal sample exchanged with ethanol and subsequently degassed at 160 °C in vacuum. When temperature rises up to

100 °C, the weight loss is about 10%, which coincides well with the theoretical value of the loss of H_2O molecules (Measured: 11 %, Calculated: 10.4 %).

Fig. S5 The PXRD patterns of 1 after immersing in several solvents.

Fig. S6 The solid-state luminescence of H₄bptc ligand (left) and 1 (right).

Fig. S7 The luminescence intensities of compound 1 in different solvents ($\lambda_{ex} = 310$ nm).

Fig. S8 The photoluminescence of 1 suspensions containing different metal ions under UV light ($\lambda_{ex} = 365$ nm).

Fig. S9 The emission spectra of **1** dispersed in ethanol (black); in ethanol solution with mixed metal ions including Li⁺, Mg²⁺, Ca²⁺, Co²⁺, Ni²⁺, Zn²⁺, Ag⁺, Cd²⁺, Cr³⁺, Mn²⁺, Al³⁺, Cu²⁺ (red); in ethanol solution with mixed metal ions and Fe³⁺ (blue).

Fig. S10 The reversibility test for sensing Fe^{3+} . The luminescence intensity of Tb-MOF a) after one circle; b) after two circles; c) after three circles.

Fig. S11 The PXRD pattern of **1** after three sensing-recovery circles.

Fig. S12 The fitting plot of the quenching efficiency with the increasing concentration of Fe^{3+} in the low concentration range.

Fig. S13 The PXRD data of the as-synthesized 1 and 1 after Fe^{3+} sensing process, with the simulated result as reference.

Fig. S14 Solid line: UV-vis spectra of ethanol suspensions containing different metal ions (10⁻³ mol/L); Dotted line: UV-Vis spectrum of **1** (3 mg) dispersed in ethanol (4 mL); Dashed line: Excitation spectrum of **1** (3 mg) dispersed in ethanol (4 mL).

Fig. S15 The UV-vis spectra of ethanol suspensions with different concentration of $Fe(NO_3)_3$.

Note that all above luminescence experiments were carried out using the crystal sample of 1 containing enantiomers 1-D and 1-L simultaneously.