Supporting Information

All metallagermoxane with an adamantanoid cage structure: $[(Cp*Ru(CO)_2Ge)_4(\mu-O)_6] (Cp* = \eta^5 - C_5Me_5)$

K. Bakthavachalam, K. Yuvaraj, Bijan Mondal, Rini Prakash and Sundargopal Ghosh*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India. Fax: 91-44-2257 4202 Email: <u>sghosh@iitm.ac.in</u>

Table of Contents

I Solid state X-ray structure and spectroscopic data of 2

Figure S1	Molecular structure of 2 .
Figure S2	C-H π interaction of compound 2 , (color code: C: gray; O: red;
	Ge: black, Ru: green; H: gray, toluene: blue).
Figure S3	¹ H NMR spectrum of 2 .
Figure S4	13 C NMR spectrum of 2 .
Figure S5	IR spectrum of 2 .
Figure S6	Mass spectrum of 2 .

II Computational details

Figure S7	Electrostatic potential analysis of 2', 2^{S} (S-analogue of 2) and 2^{Se}
	(Se-analogue of 2).
Figure S8	Computed Kohn–Sham (KS) MO of intermediate B , showing π -
	bond orthogonal to the Ge ₂ Ru ₂ plane (HOMO), slipped π orbital
	(HOMO-1) that lies in the Ge ₂ Ru ₂ plane and the LUMO+1 and
	LUMO represents the antibonding counterparts of these two
	orbitals.

Figure S9	Key natural bond orbitals of B , showing (a) σ (Ge-Ge), (b) and (c)
	π (Ge-Ge) bonding interactions.
Figure S10	Cyclic voltammogram and differential pulse voltammogram (inset)
	for 2 in CH ₃ CN containing 10^{-4} M [<i>n</i> -Bu ₄ NPClO ₄]. The cyclic
	voltammogram and the differential pulse voltammogram are
	scanned from 0 to 2 V at a scan rate of 0.10 V/s.
Scheme S1	Syntheses of tetrametallagermoxane, 2. Key reagents: a) K metal
	(4.2 equiv), thf, rt, 48 h; b) O ₂ , thf, rt, 10 min.
Scheme S2	The calculated ΔG for each step of the proposed reaction pathway.

III Supplementary Data

Table S1	Calculated natural charges (q_{Ru} , q_{Ge} , and q_E), natural valence
	population (Pop), HOMO - LUMO gaps and vertical ionization
	potential (IP _v) of 2' , 2^{s} and 2^{se} . The chalcogen atoms are indicated
	by E.

- Figure S11 Optimized geometry of **1**'.
- Figure S12 Optimized geometry of A.
- Figure S13 Optimized geometry of **B**.
- Figure S14 Optimized geometry of C.
- Figure S15 Optimized geometry of **2'**.
- Figure S16 Optimized geometry of **2**^s.
- Figure S17 Optimized geometry of **2**^{Se}.

I Solid state X-ray structure and spectroscopic data of 2

Figure S1. Molecular structure of **2**. Selected bond lengths (Å) and angels (°): O9–Ge2 1.787(5), O9–Ge1 1.798(5), O10–Ge2 1.797(5), O10–Ge3 1.797(5), O11–Ge4 1.790(5), O11–Ge3 1.793(5), O12–Ge1 1.795(5), Ge1–Ru1 2.3960(11), Ge2–Ru2 2.4042(11), Ge3–Ru3 2.3993(11), Ge4–Ru4 2.4021(11); O13–Ge1–O9 104.2(2), O12–Ge1–Ru1–115.62(17), O9–Ge1–Ru1 112.40(17), O9–Ge2–O10 104.4(2), O9–Ge2–Ru2 113.72(16), O14–Ge2–Ru2 113.66(17), O11–Ge3–O10 104.5(2), O13–Ge3–Ru3 112.46(17), O11–Ge3–Ru3 113.06(16).

Figure S2. C–H... π interaction of compound **2**, (color code: C: gray; O: red; Ge: black, Ru: green; H: gray, toluene: blue).

Figure S3. ¹H NMR spectrum of 2.

Figure S4. ¹³C NMR spectrum of 2.

Figure S5. IR spectrum of 2.

Figure S6. Mass spectrum of 2.

II Computational details

Geometry optimizations without symmetry constraints were carried out using Gaussin09¹ software suite. The calculations were performed using density functional theory at the BP86² level in conjunction with def2-TZVP³ basis sets. The 28 core electrons of ruthenium were replaced by the quasi-relativistic effective core potential def2-ECP⁴ for ruthenium. To save computing time all the calculations were carried out with the Cp analogue model compounds, instead of Cp^{*}. The model compounds were fully optimized in gaseous state (no solvent effect). Stationary points were characterized as minima by calculating the Hessian matrix analytically at the same level. Thermodynamic corrections and Kohn-Sham orbitals have been taken from these calculations. The standard state for all thermodynamic data is 298.15 K and 1 atm. NBO analysis was carried out using the NBO routine within the Gaussian09 package. For NBO analysis, BP86 functional and 6-31g* basis set⁵ (SDD-ECP⁶ on Ru) was employed. Wiberg bond indexes (WBI)⁷ and NBO second order perturbation energy values on some selected bonds are obtained on natural bond orbital (NBO) analysis.^{8,9}

Figure S7. Electrostatic potential analysis of 2', 2^s (S-analogue of 2) and 2^{se} (Se-analogue of 2).

Figure S8. Computed Kohn–Sham (KS) MO of intermediate **B**, showing π -bond orthogonal to the Ge₂Ru₂ plane (HOMO), slipped π orbital (HOMO–1) that lies in the Ge₂Ru₂ plane and the LUMO+1 and LUMO represents the antibonding counterparts of these two orbitals.

Figure S9. Key natural bond orbitals of **B**, showing (a) σ (Ge–Ge), (b) and (c) π (Ge–Ge) bonding interactions.

Figure S10. Cyclic voltammogram and differential pulse voltammogram (inset) for 2 in CH₃CN containing 10^{-4} M [*n*-Bu₄NPClO₄]. The cyclic voltammogram and the differential pulse voltammogram are scanned from 0 to 2 V at a scan rate of 0.10 V/s.

Scheme S1. Syntheses of tetrametallagermoxane, **2**. Key reagents: a) K metal (4.2 equiv), thf, rt, 48 h; b) O₂, thf, rt, 10 min.

Scheme S2. The calculated ΔG for each step of the proposed reaction pathway.

Table S1: Calculated natural charges (q_{Ru} , q_{Ge} , and q_E), natural valence population (Pop), HOMO – LUMO gaps and vertical ionization potential (IP_v) of 2', 2^S and 2^{Se}. The chalcogen atoms are indicated by E.

	q _{Ru}	q _{Ge}	$\mathbf{q}_{\mathbf{E}}$	Pop (Ru _{val})	Pop (Ge _{val})	Pop (E _{val})	ΔE_{H-L} (eV)	IP _v (eV)
2'	-1.098	1.936	-1.150	9.092	2.042	7.144	3.36	7.89
2 ^s	-1.038	0.953	-0.556	9.031	2.999	6.541	2.66	6.58
2 ^{Se}	-1.031	0.705	-0.393	9.024	3.250	6.380	2.25	6.32

 IP_v : The vertical ionization potential computed for the compounds **2'**, **2^s** and **2^{se}**, corresponds to the removal of one electron from the fixed geometry of the neutral molecule.

Cartesian coordinates of the optimized molecules along with their total energies (T.E, in hartrees) including zero point vibrational correction.

T.E = -6799.899339

Figure S11. Optimized geometry of 1'.

Cartesian coordinates for the calculated structure of 1' (in Å).

Center	Ato	omic	Atomic	Coordin	ates (A	ngsi
Number	N	umber	Туре	X	Y	Z
1	6	0	1.187697	-3.503071	0.5967	717
2	6	0	-0.188252	-3.648813	0.132	202
3	6	0	-0.267141	-3.080894	-1.185	329
4	6	0	1.033552	-2.562966	-1.536	453
5	6	0	1.936656	-2.837176	-0.445	619
6	6	0	0.187075	-1.089733	2.1698	840
7	17	0	-3.309903	-0.241463	1.659	0133
8	17	0	-3.197998	-1.078083	-1.61	0018
9	32	0	-1.845612	-0.398965	0.004	899

10	8	0	0.130822 -0.914352 3.326071
11	44	0	0.308583 -1.470994 0.364310
12	6	0	-1.397357 3.403954 -0.573987
13	6	0	0.027360 3.676222 -0.414953
14	6	0	0.411416 3.232531 0.900269
15	6	0	-0.750973 2.664612 1.545336
16	6	0	-1.870442 2.794472 0.643238
17	6	0	-0.201025 1.038868 -2.188455
18	17	0	3.339269 0.224661 -1.591454
19	17	0	3.144186 1.094657 1.666982
20	32	0	1.842702 0.396715 0.029244
21	8	0	-0.145325 0.839589 -3.325598
22	44	0	-0.311972 1.470938 -0.380757
23	1	0	1.579139 -3.854793 1.550560
24	1	0	3.002505 -2.602018 -0.422050
25	1	0	1.303723 -2.061866 -2.470537
26	1	0	-1.162468 -3.022963 -1.814393
27	1	0	-1.001356 -4.146589 0.680076
28	1	0	1.414748 3.290803 1.331590
29	1	0	0.672803 4.165576 -1.148200
30	1	0	-2.005451 3.650085 -1.447373
31	1	0	-2.896511 2.490600 0.845597
32	1	0	-0.784708 2.239545 2.546288

T.E = -4958.648618

Center	Ato	mic	Atomic	Coordin	ates (Angstroms)
Number	Nı	umber	Туре	X	Y Z
1	6	0	-3.646788	0.101528	-0.610578
2	6	0	-3.489719	-0.816434	0.487128
3	6	0	-2.861842	-0.111704	1.557846
4	6	0	-2.625354	1.235369	1.124091
5	6	0	-3.139185	1.372518	-0.206724
6	6	0	-0.955502	-1.283428	-1.689411
7	32	0	-0.003497	-1.561878	1.181826
8	8	0	-0.703547	-1.976218	-2.599923
9	44	0	-1.422012	-0.200962	-0.266289
10	6	0	3.647317	-0.106533	0.603822
11	6	0	3.489004	0.811806	-0.493377
12	6	0	2.856156	0.108576	-1.562144
13	6	0	2.617839	-1.237958	-1.127677
14	6	0	3.135510	-1.376328	0.201535
15	6	0	0.962798	1.284554	1.691094
16	32	0	0.002386	1.565282	-1.177410
17	8	0	0.716446	1.977598	2.602958
18	44	0	1.422199	0.201136	0.266453
19	1	0	-4.107878	-0.127204	-1.567670
20	1	0	-3.146432	2.284514	-0.797631
21	1	0	-2.176359	2.023836	1.722314
22	1	0	-2.639977	-0.509553	2.545376
23	1	0	-3.809429	-1.854524	0.501865
24	1	0	2.632165	0.506970	-2.548970
25	1	0	3.811090	1.849145	-0.509096
26	1	0	4.111899	0.121107	1.559485
27	1	0	3.142442	-2.288339	0.792418
28	1	0	2.165198	-2.025387	-1.724525

Cartesian coordinates for the calculated structure of A (in Å).

T.E = -5185.396318

Figure S13. Optimized geometry of B.

Cartesian coordinates for the calculated structure of ${\bf B}$ (in Å).

Center	Ato	omic .	Atomic	Coordin	ates (Angstroms)
Number	N	umber	Type	X	Y Z
1	32	0	0.987516	-0.130390	0.618908
2	32	0	-0.971670	-0.175865	-0.542096
3	44	0	-3.348043	0.094477	0.133110
4	6	0	-4.619778	-0.656263	-1.630702
5	6	0	-5.510060	-0.218441	-0.585804
6	6	0	-5.304530	-1.054251	0.546055
7	6	0	-4.287049	-2.016240	0.209769
8	6	0	-3.885992	-1.779053	-1.138495
9	6	0	-3.129024	1.917073	-0.180531
10	6	0	-2.694295	0.316814	1.867352
11	1	0	-4.549838	-0.233966	-2.629369
12	1	0	-6.215416	0.605479	-0.653525
13	1	0	-5.825069	-0.981728	1.497160
14	1	0	-3.909019	-2.801302	0.858793
15	1	0	-3.131664	-2.338302	-1.685199
16	8	0	-3.045325	3.058086	-0.375919
17	8	0	-2.370297	0.445161	2.974487
18	44	0	3.344740	0.086463	-0.149094
19	6	0	4.591873	-0.633835	1.646361

20	6	0	5.491832 -	0.163571	0.625498
21	6	0	5.345514 -	1.000838	-0.515632
22	6	0	4.349266 -	1.994177	-0.207994
23	6	0	3.904827 -	1.775888	1.129130
24	6	0	3.136687	1.925005	0.057863
25	6	0	2.637435	0.204176	-1.872407
26	1	0	4.485221 -	0.219739	2.645128
27	1	0	6.168027	0.682696	0.714150
28	1	0	5.890113 -	0.908869	-1.451299
29	1	0	4.009001 -	2.785382	-0.870592
30	1	0	3.152658 -	2.360008	1.652161
31	8	0	3.061309	3.076373	0.184648
32	8	0	2.279811	0.264986	-2.975071

_

T.E = -10370.892349

Center	Ate	omic	Atomic	Coordin	ates (Angstroms)
Number	N	umber	Туре	X	Y Z
	32	0	0.126669	0.228342	-0.040343
2	32	0	0.069798	0.060691	2.811371
3	32	0	2.066701	0.225963	1.416611
4	32	0	-1.763374	1.092292	1.405168
5	44	0	-0.397082	-1.447399	4.774190
6	6	0	-1.888173	0.115625	5.605956
7	6	0	-1.183249	-0.469293	6.701278
8	6	0	-1.507348	-1.868835	6.757485
9	6	0	-2.391115	-2.144857	5.673560
10	6	0	-2.627325	-0.923946	4.955148
11	6	0	1.422054	-1.445854	5.157555
12	6	0	-0.171235	-2.840046	3.558649
13	1	0	-1.871007	1.163758	5.318696
14	1	0	-0.533148	0.061010	7.392551
15	1	0	-1.145457	-2.583226	7.491396
16	1	0	-2.815998	-3.115879	5.431613
17	1	0	-3.264162	-0.801229	4.083306
18	8	0	2.545665	-1.459188	5.461495
19	8	0	-0.073864	-3.742688	2.832901
20	44	0	-0.119169	-1.064028	-2.201694
21	6	0	1.462505	-2.736430	-2.232062
22	6	0	0.658058	-2.851249	-3.421198
23	6	0	-0.678423	-3.131963	-3.022166
24	6	0	-0.711015	-3.190063	-1.583511
25	6	0	0.618022	-2.966788	-1.104895
26	6	0	0.768279	0.360858	-3.021095
27	6	0	-1.746090	-0.189839	-2.399796
28	1	0	2.529184	-2.533897	-2.202407
29	1	0	1.011845	-2.743788	-4.443051
30	1	0	-1.527126	-3.275824	-3.685541
31	1	0	-1.580965	-3.408380	-0.970682
32	1	0	0.925655	-2.965776	-0.063046
33	8	0	1.320326	1.218618	-3.577101
34	8	0	-2.778596	0.322313	-2.563664
35	44	0	-1.943047	3.672772	1.422322
36	6	0	-2.274831	4.348746	-0.755825
37	6	0	-2.462836	5.490415	0.100553
38	6	0	-3.577449	5.222221	0.943241
39	6	0	-4.090892	3.919876	0.607244
					10

Cartesian coordinates for the calculated structure of C (in Å).

40	6	0	-3.294674	3.395343	-0.455944
41	6	0	-0.095522	3.765131	1.589916
42	6	0	-2.090257	3.529321	3.262027
43	1	0	-1.510365	4.244549	-1.520976
44	1	0	-1.859275	6.393828	0.103520
45	1	0	-3.976297	5.886515	1.705323
46	1	0	-4.953100	3.436273	1.058004
47	1	0	-3.431835	2.435230	-0.946880
4 8	8	0	1.056719	3.896697	1.690736
49	8	0	-2.197393	3.476789	4.424366
50	44	0	4.465001	-0.583471	1.491393
51	6	0	5.656038	1.356341	1.864376
52	6	0	6.590559	0.261902	1.786543
53	6	0	6.321336	-0.624089	2.865150
54	6	0	5.214234	-0.088325	3.614845
55	6	0	4.831745	1.147700	3.010851
56	6	0	4.412676	-0.730845	-0.359355
57	6	0	3.812155	-2.318817	1.659069
58	1	0	5.613350	2.210497	1.194225
59	1	0	7.364909	0.137974	1.034122
60	1	0	6.850942	-1.547596	3.082648
61	1	0	4.768603	-0.527754	4.502779
62	1	0	4.034163	1.803753	3.349213
63	8	0	4.444134	-0.830876	-1.519555
64	8	0	3.463330	-3.423656	1.766527

T. E = -10822.737525

Figure S15. Optimized geometry of 2'.

Cartesian coordinates for the calculated structure of 2' (in Å).

Center Number	Ata N	omic umber	Atomic Type	Coordin X	iates Y	(Angst Z	roms)
1	8	0	-0.998719	0.591151	-1.77	75561	
2	8	0	-0.593651	1.742293	0.85	6279	
3	8	0	1.009827	-0.530000	1.61	2100	
4	8	0	0.612189	-1.688553	-1.02	20121	
5	8	0	-1.678447	-0.922668	0.59	92858	
6	8	0	1.680939	0.975655	- 0 .77	7261	

7	32	0	-1.106735 -1.110999 -1.127152
8	32	0	0.037212 1.766223 -0.843875
9	32	0	-0.688581 0.127190 1.696556
10	32	0	1.769763 -0.687061 -0.027910
11	44	0	0.120173 3.975286 -1.889492
12	6	0	1.952316 3.759524 -3.226170
13	6	0	1.493042 5.119915 -3.324131
14	6	0	0.186930 5.110548 -3.890959
15	6	0	-0.171532 3.738752 -4.145801
16	6	0	0.923542 2.912570 -3.751345
17	6	0	0.766078 4.614483 -0.259739
18	6	0	-1.641194 4.224757 -1.319028
19	1	0	2.912749 3.430202 -2.841381
20	1	0	2.047927 6.002140 -3.015442
21	1	0	-0.428470 5.981569 -4.098828
22	1	0	-1.103566 3.390480 -4.582134
23	1	0	0.958679 1.828865 -3.821543
24	8	0	1.193537 5.052445 0.726060
25	8	0	-2.743629 4.413012 -1.011380
26	44	0	-2.637250 -2.502827 -2.428785
27	6	0	-4.519980 -2.693238 -1.152486
28	6	0	-4.770965 -3.348934 -2.410786
29	6	0	-4.692531 -2.367949 -3.439557
30	6	0	-4.393193 -1.099571 -2.825874
31	6	0	-4.306316 -1.304933 -1.413088
32	6	0	-1.645894 -3.992792 -1.890319
33	6	0	-1.502962 -2.237677 -3.885124
34	1	0	-4.514890 -3.161769 -0.172428
35	1	0	-4.984115 -4.405512 -2.548765
36	1	0	-4.833048 -2.544521 -4.502669
37	1	0	-4.277045 -0.148489 -3.337265
38	1	0	-4.089334 -0.548043 -0.663898
39	8	0	-1.078087 -4.950151 -1.565423
40	8	0	-0.832632 -2.074789 -4.819865
41	44	0	4.032327 -1.611116 -0.076594
42	6	0	4.091662 -3.013276 -1.878067
43	6	0	5.417965 -2.960376 -1.317978
44	6	0	5.887503 -1.621116 -1.427772
45	6	0	4.857412 -0.835825 -2.057235
46	6	0	3.758769 -1.705716 -2.347079
47	6	0	3.522402 -2.766251 1.301015
48 42	6	U	4.506119 -0.301384 1.165429
49 50	1	U	3.45/962 -3.892601 -1.950473
50 54	1	U	5.963195 -3.796846 -0.889220
51 52	1	U	6.854381 -1.253676 -1.094093
52	1	U	4.90980/ 0.223580 -2.290251
53	1	U	2.821981 -1.425179 -2.820955

54	8	0	3.248874	-3.520047	2.138273
55	8	0	4.848356	0.510801	1.920711
56	44	0	-1.455199	0.338699	4.002178
57	6	0	0.541330	0.537887	5.081414
58	6	0	-0.499670	0.521016	6.075257
59	6	0	-1.326295	1.663626	5.874828
60	6	0	-0.800138	2.395971	4.751193
61	6	0	0.358738	1.709059	4.277927
62	6	0	-1.812601	-1.494620	3.980076
63	6	0	-3.163046	0.702584	3.339984
64	1	0	1.336157	-0.192824	4.964967
65	1	0	-0.632284	-0.235438	6.844443
<u>66</u>	1	0	-2.195764	1.938014	6.465835
67	1	0	-1.199538	3.320389	4.343415
<u>68</u>	1	0	0.984490	2.014731	3.443621
69	8	0	-2.029689	-2.633193	4.020568
70	8	0	-4.233500	0.952600	2.967280

T. E = -24782.229097

Figure S16. Optimized geometry of 2^s.

Cartesian coordinates for the calculated structure of 2^{S} (in Å).

Center	Ato	mic	Atomic	omic Coordin			ates (Angstroms)		
Number	Nı	ımber	Type	X	Y	Ζ			
1	32	0	0.733014	1.762466	-1.1	94348			
2	32	0	0.764003	0.030784	2.05	57340			
3	32	0	-2.299531	0.105906	0.0	39000			
4	32	0	0.565980	-1.901324	-1.0	73176			
5	44	0	1.815260	0.061775	4.30	07487			

6	6	0	3.691025 -	1.228840	4.101067
7	6	0	3.630184 -	0.744607	5.456416
8	6	0	3.725742	0.674913	5.422527
9	6	0	3.846255	1.080030	4.044898
10	6	0	3.841389	-0.098843	3.238351
11	6	0	0.519679	-1.161648	4.868847
12	6	0	0.703761	1.498344	4.746332
13	1	0	3.652747	-2.267861	3.786372
14	1	0	3.527237	-1.356652	6.348546
15	1	0	3.709764	1.337528	6.283795
16	1	0	3.948782	2.098218	3.680439
17	1	0	3.911381	-0.128055	2.153747
18	8	0	-0.238971	-1.941660	5.269956
19	8	0	0.064676	2.410287	5.069540
20	44	0	1.521965	3.815857	-2.341758
21	6	0	-0.129340	5.354320	-1.973228
22	6	0	0.904224	5.984119	-2.754608
23	6	0	2.095679	6.005445	-1.976109
24	6	0	1.807523	5.388054	-0.706272
25	6	0	0.431145	5.005028	-0.705661
26	6	0	1.015944	3.041539	-3.966776
27	6	0	3.217050	3.040891	-2.456720
28	1	0	-1.159649	5.193571	-2.277908
29	1	0	0.793163	6.373750	-3.763076
30	1	0	3.053793	6.415013	-2.284727
31	1	0	2.502991	5.257551	0.117927
32	1	0	-0.093970	4.510772	0.108254
33	8	0	0.699776	2.629644	-5.002902
34	8	0	4.297041	2.622798	-2.530735
35	44	0	1.400344	-3.946786	-2.205255
36	6	0	3.315471	-3.274552	-3.257669
37	6	0	3.102622	-4.666394	-3.560727
38	6	0	3.169445	-5.400238	-2.342823
39	6	0	3.424865	-4.466208	-1.275528
40	6	0	3.529451	-3.162081	-1.848554
41	6	0	0.085353	-3.690901	-3.509591
42	6	0	0.220595	-4.944076	-1.154022
43	1	0	3.336340	-2.455101	-3.970471
44	1	0	2.919811	-5.083138	-4.547707
45	1	0	3.049836	-6.475055	-2.236330
46	1	0	3.541412	-4.710346	-0.223379
47	1	0	3.714991	-2.238221	-1.306770
48	8	0	-0.685758	-3.575837	-4.366934
49	8	0	-0.469476	-5.619699	-0.511821
50	44	0	-4.772599	0.074427	0.223235
51	6	0	-5.394346	-2.125832	0.266339
52	6	0	-6.579899	-1.320837	0.418598

53	6	0	-6.456309 -0.581656 1.629206	,
54	6	0	-5.195094 -0.923727 2.235287	7
55	6	0	-4.554488 -1.888665 1.397390)
56	6	0	-4.863104 0.468208 -1.602650)
57	6	0	-4.710969 1.892042 0.651935	
58	1	0	-5.182557 -2.812084 -0.54884	5
59	1	0	-7.420146 -1.285177 -0.269620	6
60	1	0	-7.186079 0.118571 2.027245	
61	1	0	-4.805934 -0.540740 3.174444	ļ
62	1	0	-3.585133 -2.346263 1.578917	7
63	8	0	-4.988182 0.683888 -2.734557	7
64	8	0	-4.735802 3.012914 0.948864	
65	16	0	1.409268 -1.909376 1.047962	7
66	16	0	1.591688 1.823425 0.919833	;
67	16	0	-1.495642 0.149378 2.171443	3
68	16	0	-1.537425 1.894284 -1.13199	2
69	16	0	-1.697801 -1.824527 -1.00758	8
70	16	0	1.397167 -0.135107 -2.24581	0

T. $E = -24782.229097$

Figure S17. Optimized geometry of 2^{Se}.

Cartesian coordinates for the calculated structure of 2^{Se} (in Å).

Center Number	At N	omic Iumber	Atomic Type	Coordin X	ates Y	(Angstr Z	oms)
1	32	0	0.858364	1.819753	-1.2	57166	
2	32	0	0.822561	-0.009220	2.1	68497	
3	32	0	-2.406066	0.226071	0.0	56353	
4	32	0	0.498531	-2.025187	-1.1	135523	
5	44	0	1.897583	-0.043722	4.4	19995	
6	6	0	3.718746	-1.417019	4.2	31647	
7	6	0	3.678136	-0.908620	5.5	79013	

8	6	0	3.832957	0.505000	5.520891
9	6	0	3.970494	0.882042	4.137014
10	6	0	3.914965	-0.309425	3.350326
11	6	0	0.559018	-1.219371	4.983789
12	6	0	0.851951	1.432849	4.886916
13	1	0	3.640205	-2.459310	3.935488
14	1	0	3.550517	-1.500889	6.481209
15	1	0	3.844620	1.181924	6.371070
16	1	0	4.118166	1.888634	3.756241
17	1	0	3.983424	-0.361172	2.266332
18	8	0	-0.223428	-1.972034	5.391140
19	8	0	0.257674	2.366329	5.233259
20	44	0	1.748324	3.851103	-2.395904
21	6	0	0.186612	5.482205	-2.027502
22	6	0	1.255756	6.050082	-2.808536
23	6	0	2.445411	6.002966	-2.028664
24	6	0	2.120618	5.405441	-0.758104
25	6	0	0.724456	5.102901	-0.758843
26	6	0	1.202928	3.118695	-4.027652
27	6	0	3.403709	2.995038	-2.518587
28	1	0	-0.851524	5.384174	-2.332337
29	1	0	1.168510	6.445264	-3.817198
30	1	0	3.425947	6.356561	-2.336193
31	1	0	2.806336	5.238613	0.067812
32	1	0	0.170798	4.640292	0.054910
33	8	0	0.867240	2.738466	-5.069778
34	8	0	4.463809	2.530580	-2.599889
35	44	0	1.248285	-4.114271	-2.270581
36	6	0	3.198483	-3.559592	-3.330454
37	6	0	2.917920	-4.946253	-3.601597
<u>38</u>	6	0	2.945699	-5.652321	-2.365919
39	6	0	3.243666	-4.706671	-1.320016
40	6	0	3.413891	-3.423510	-1.924138
41	6	0	-0.041065	-3.801704	-3.588173
42	6	0	0.017792	-5.061876	-1.231535
43	1	0	3.263732	-2.760552	-4.063599
44	1	0	2.718649	-5.377316	-4.579170
45	1	0	2.772515	-6.717012	-2.233932
46	1	0	3.346093	-4.930079	-0.261745
47	1	0	3.641105	-2.496095	-1.403987
4 8	8	0	-0.796361	-3.656725	-4.455117
49	8	0	-0.703314	-5.713651	-0.598986
50	44	0	-4.888061	0.293932	0.258069
51	6	0	-5.602135	-1.880116	0.323083
52	6	0	-6.751543	-1.022405	0.464272
53	6	0	-6.598733	-0.277434	1.667719
54	6	0	-5.354480	-0.667923	2.280006

55	6	0	-4.755040 -1.668123 1.453574
56	6	0	-4.978179 0.677848 -1.569861
57	6	0	-4.759200 2.110445 0.676010
58	1	0	-5.421040 -2.585413 -0.483271
59	1	0	-7.587918 -0.956433 -0.226373
60	1	0	-7.298251 0.457692 2.056940
61	1	0	-4.951831 -0.293838 3.217112
62	1	0	-3.805981 -2.165049 1.640612
63	8	0	-5.109162 0.889733 -2.701833
64	8	0	-4.749332 3.232760 0.968098
65	34	0	1.398210 -2.109557 1.113291
66	34	0	1.802830 1.850716 0.973626
67	34	0	-1.565009 0.250739 2.323737
68	34	0	-1.539889 2.091069 -1.201225
69	34	0	-1.900644 -1.852169 -1.067660
70	34	0	1.465846 -0.209766 -2.404776

References

- Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- a) H. L. Schmider and A. D. Becke, J. Chem. Phys., 1998, 108, 9624; b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.
- 3 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.

- 4 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, 77, 123.
- 5 V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, *J. Comput. Chem.*, 2001, **22**, 976.
- 6 M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866.
- 7 K. Wiberg, *Tetrahedron*, 1968, **24**, 1083.
- 8 F. Weinhold and C. R. Landis, Valency and bonding: A natural bond orbital donoracceptor perspective.Cambridge University Press: Cambridge; U.K, 2005.
- 9 A. E. Reed, L. A. Curtiss and F. Weinhold, *Chem. Rev.*, 1988, **88**, 899.