Supporting Information for

Sodalite-like Rare-Earth Carbonate: A Study of Structural Transformation and Diluted Magnetism

Yanyan Wang,^a Tian Han,^a You-Song Ding,^a Zhiping Zheng^b and Yan-Zhen Zheng^{a,*}

^a Centre for Applied Chemical Research, Frontier Institute of Science and Technology, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, College of Science, Xi'an Jiaotong University, Xi'an 710054, China.

^b Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA

*To whom correspondence should be addressed. *Email: zheng.yanzhen@xjtu.edu.cn

Table of Contents

Table S1. Crystal data and structure refinement for 1a.
Table S2. Crystal data and structure refinement for 2^a 4
Table S3. Crystal data and structure refinement for 3^a
Table S4. Selected bond lengths [Å] for 1, 2, 3 and 1-c.
Table S5. Crystal data and structure refinement for 1-c ^a .
Fig. S1 Thermal ellipsoids given at 50% probability, showing the atomic labeling scheme of 1, 2 and 3, with white H atoms signed as white balls
Fig. S2 Experimental PXRD patterns of 1, 2, 3, 1d and 2d, comparing with the simulated one for 39
Fig. S3 TGA curves of as-synthesized 110
Fig. S4 Experimental PXRD for 1-c, 2-c and 3-c and simulated PXRD pattern of 1-c10
Fig. S5 X-ray photoelectron spectra of (a) 1 and (b) 1-c, the signal around 198 eV, which corresponding to Cl 2p, indicating the existence of Cl for the crystals
Fig. S6 Asymmetric unit of 1-c, shows three crystallographically distinct of Dy atoms13
Fig. S7 Structure of 1-c along [001] direction, with 3-D intersection 6-ring channels along [001], [11], [211] and [12]
Fig. S8 M-H curve for (a) 1; (b) 1-c and (c) 2 at 2.00 K15
Fig. S8 M-H curve for (a) 1; (b) 1-c and (c) 2 at 2.00 K15 Fig. S9 Temperature-dependent in-phase ($\chi'_{\rm M}$) (up) and out-of-phase ($\chi'_{\rm M}$) (down) ac
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K
Fig. S8 M-H curve for (a) 1 ; (b) 1-c and (c) 2 at 2.00 K

Compound	1
Empirical formula	CH ₆ ClDy ₃ O ₉
Formula weight	685.01
Temperature	296(2) K
Wavelength (Å)	0.71073
Crystal system, space group	Cubic, Im-3
Unit cell dimensions	
<i>a</i> (Å)	12.4754(6)
<i>b</i> (Å)	12.4754(6)
<i>c</i> (Å)	12.4754(6)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	1941.62(16)
Z, calculated density (mg m ^{-3})	8, 4.687
Absorption coefficient (mm ⁻¹)	23.150
<i>F</i> (000)	2392
Crystal size (mm ³)	$0.32\times0.21\times0.15$
θ range (°) for data collection	2.31 - 27.46
Limiting indices	$-13 \le h \le 16, -16 \le k \le 15, -16 \le l \le 12$
Reflections collected/unique	$8032/426, [R_{int} = 0.0272]$
Completeness to θ (%)	27.46, 100.0
Absorption correction	Semi-empirical from equivalents
Max and min transmission	0.1288 and 0.0505
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	426/7/32
Goodness-of-fit on F^2	0.989
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0395, wR_2 = 0.1005$
R indices (all data)	$R_1 = 0.0401, wR_2 = 0.1010$
Largest diff. peak and hole (e Å ⁻³)	3.028 and -2.256

Table S1. Crystal data and structure refinement for 1a.

 $aR_1 = \sum (\Delta F / \sum (F_o)), wR_2 = (\sum [w(F_o^2 - F_c^2)]) / \sum [w(F_o^2)^2]^{1/2} \text{ and } w = 1/\sigma^2 (F_o^2).$

Compound	2
Empirical formula	CH ₆ ClEr ₃ O ₉
Formula weight	699.29
Temperature	296(2) K
Wavelength (Å)	0.71073
Crystal system, space group	Cubic, Im-3m
Unit cell dimensions	
<i>a</i> (Å)	12.4127(4)
<i>b</i> (Å)	12.4127(4)
<i>c</i> (Å)	12.4127(4)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	1912.49(11)
Z, calculated density (mg m ^{-3})	8, 4.857
Absorption coefficient (mm ⁻¹)	26.389
<i>F</i> (000)	2440
Crystal size (mm ³)	$0.07\times0.07\times0.05$
θ range (°) for data collection	2.32 - 27.49
Limiting indices	$-10 \le h \le 9, -4 \le k \le 16, -12 \le l \le 16$
Reflections collected/unique	1614/252, $[R_{int} = 0.0199]$
Completeness to θ (%)	27.49, 100.0
Absorption correction	Semi-empirical from equivalents
Max and min transmission	0.3521 and 0.2595
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	252/7/21
Goodness-of-fit on F^2	1.115
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0490, wR_2 = 0.1261$
R indices (all data)	$R_1 = 0.0553, wR_2 = 0.1313$
Largest diff. peak and hole (e Å ⁻³)	3.584 and -3.019

Table S2. Crystal data and structure refinement for 2^a .

 $\frac{1}{a} R_1 = \sum (\Delta F / \sum (F_o)), \ wR_2 = (\sum [w(F_o^2 - F_c^2)]) / \sum [w(F_o^2)^2]^{1/2} \text{ and } w = 1/\sigma^2 (F_o^2).$

Compound	3
Empirical formula	CH ₆ ClY ₃ O ₉
Formula weight	464.24
Temperature	296(2) K
Wavelength (Å)	0.71073
Crystal system, space group	Cubic, Im-3m
Unit cell dimensions	
<i>a</i> (Å)	12.665(9)
<i>b</i> (Å)	12.665(9)
<i>c</i> (Å)	12.665(9)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	2032(2)
Z, calculated density (mg m ^{-3})	8, 3.035
Absorption coefficient (mm ⁻¹)	17.281
<i>F</i> (000)	1744
Crystal size (mm ³)	$0.05\times0.05\times0.05$
θ range (°) for data collection	2.27 - 26.90
Limiting indices	$-16 \le h \le 5, -14 \le k \le 15, -11 \le l \le 7$
Reflections collected/unique	2253/251, $[R_{int} = 0.0526]$
Completeness to θ (%)	26.90, 99.6
Absorption correction	Semi-empirical from equivalents
Max and min transmission	0.4787 and 0.4787
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	251/7/21
Goodness-of-fit on F^2	1.117
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0701, wR_2 = 0.1868$
R indices (all data)	$R_1 = 0.0884, wR_2 = 0.2061$
Largest diff. peak and hole (e Å ⁻³)	2.923 and -1.350

Table S3. Crystal data and structure refinement for $\mathbf{3}^{a}$.

 $\frac{1}{a} R_1 = \sum (\Delta F / \sum (F_o)), \ wR_2 = (\sum [w(F_o^2 - F_c^2)]) / \sum [w(F_o^2)^2]^{1/2} \text{ and } w = 1/\sigma^2 (F_o^2).$

	1	2	2	3		1-0	:
Dy(1)-O(2)	2.304(11)	Er(1)-O(2)	2.290(13)	Y(1)-O(2)	2.333(10)	Dy(1)-O(1)	2.34(5)
Dy(1)-O(2)#5	2.347(7)	Er(1)-O(2)#7	2.290(13)	Y(1)-O(2)#7	2.333(10)	Dy(1)-O(2)	2.31(2)
Dy(1)-O(2)#6	2.347(7)	Er(1)-O(2)#8	2.328(8)	Y(1)-O(2)#8	2.379(6)	Dy(1)-O(3)	2.36(6)
Dy(1)-O(3)	2.302(11)	Er(1)-O(2)#2	2.328(8)	Y(1)-O(2)#1	2.379(6)	Dy(1)-O(4)	2.13(4)
Dy(1)-O(3)#1	2.347(7)	Er(1)-O(2)#9	2.328(8)	Y(1)-O(2)#9	2.379(6)	Dy(1)-O(2)#4	2.16(5)
Dy(1)-O(3)#7	2.347(7)	Er(1)-O(2)#10	2.328(8)	Y(1)-O(2)#10	2.379(6)	Dy(1)-O(4)#4	2.33(4)
Dy(1)-O(1)	2.536(13)	Er(1)-O(1)	2.522(16)	Y(1)-O(1)	2.565(12)	Dy(2)-O(1)	2.206(19)
Dy(1)-O(1)#1	2.539(14)	Er(1)-O(1)#11	2.522(16)	Y(1)-O(1)#11	2.565(12)	Dy(2)-O(2)	2.41(6)
Dy(1)-O(1)#7	2.539(14)	Er(1)-O(1)#12	2.522(16)	Y(1)-O(1)#12	2.565(12)	Dy(2)-O(1)#5	2.31(4)
Dy(1)-O(1)#8	2.536(14)	Er(1)-O(1)#2	2.522(16)	Y(1)-O(1)#1	2.565(12)	Dy(2)-O(3) #2	2.27(6)
C(1)-O(1)#1	1.274(13)	C(1)-O(1)#1	1.28(2)	C(1)-O(1)#1	1.311(18)	Dy(2)-O(3) #3	2.25(5)
C(1)-O(1)#2	1.274(13)	C(1)-O(1)#2	1.28(2)	C(1)-O(1)#3	1.311(18)	Dy(2)-O(4)#5	2.40(5)
C(1)-O(1)#3	1.274(13)	C(1)-O(1)#3	1.28(2)	C(1)-O(1)#4	1.311(18)	Dy(3)-O(1)	2.215(19)
C(1)-O(1)#4	1.274(13)	C(1)-O(1)#4	1.28(2)	C(1)-O(1)#5	1.311(18)	Dy(3)-O(3)#3	2.21(5)
C(1)-O(1)	1.274(13)	C(1)-O(1)#5	1.28(2)	C(1)-O(1)#2	1.311(18)	Dy(3)-O(4)#4	2.27(5)
C(1)-O(1)#5	1.274(13)	C(1)-O(1)	1.28(2)	C(1)-O(1)	1.311(18)	Dy(3)-O(2)#3	2.24(5)
Symmetry transformations used to generate equivalent atoms:							
For 1 :							
#1 -z+3/2,-x+3	3/2,-y+3/2	#2 y,z,x	#3 -x+3/2,-	y+3/2,-z+3/2	#4 z,x,y	#5 -y+3/2,-	z+3/2,-x+3/2
#6 y-1/2,-z+3/	2,x+1/2	#7 z-1/2,-x+3/2,-y-	+3/2 #8 -x-	+1,y,z			
For 2 :							

Table S4. Selected bond lengths [Å] for **1**, **2**, **3** and **1-c**.

#1 -y+1/2,-z+1/2,-x+1/2 #2 -z+1/2,-x+1/2,-y+1/2 #3 z,x,y #4 y,z,x #5 -x+1/2,-y+1/2,-z+1/2 #6 -y+1/2,z+1/2,-x+1/2 #7 z,-y+1,x #8 -y+1/2,-z+1/2 #9 y-1/2,x+1/2,-z+1/2 #10 -z+1/2,x+1/2,y-1/2 #11 x,-y+1,z #12 -z+1/2,x+1/2,-y+1/2 For **3**: #1 -z+1/2,-x+1/2,-y+1/2 #2 -y+1/2,-z+1/2 #3 y,z,x #4 -x+1/2,-y+1/2,-z+1/2 #5 z,x,y #6 -y+1/2,z+1/2,-x+1/2 #7 z,-y+1,x #8 -y+1/2,-x+1/2,-z+1/2 #9 -z+1/2,x+1/2,y-1/2 #10 y-1/2,x+1/2,z+1/2 #11 x,-y+1,z #12 -z+1/2,x+1/2,-y+1/2

For 1-c: #1 x-y,x-1,-z+1 #2 -x+y+4/3,-x+2/3,z-1/3 #3 -x+5/3,-y+1/3,-z+4/3 #4 -y+2/3,x-y-2/3,z+1/3 #5 y+1,-x+y+1,-z+1

Compound	1-c
Empirical formula	ClDy ₃ O ₅
Formula weight	586.95
Temperature	296(2) K
Wavelength (Å)	0.71073
Crystal system, space group	Trigonal, R-3
Unit cell dimensions	
a (Å)	16.64(3)
<i>b</i> (Å)	16.64(3)
<i>c</i> (Å)	10.217(19)
α (°)	90
β (°)	90
γ (°)	120
Volume (Å ³)	2451(8)
Z, calculated density (mg m^{-3})	18, 7.158
Absorption coefficient (mm ⁻¹)	41.134
<i>F</i> (000)	4446
Crystal size (mm ³)	$0.06 \times 0.06 \times 0.03$
θ range (°) for data collection	2.45 - 24.83
Limiting indices	$-18 \le h \le 19, -19 \le k \le 19, -12 \le l \le 9$
Reflections collected/unique	$3945/894$, [$R_{\rm int} = 0.1268$]
Completeness to θ (%)	24.83, 96.6
Absorption correction	Semi-empirical from equivalents
Max and min transmission	0.3717 and 0.1916
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	894/27/81
Goodness-of-fit on F^2	0.950
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0927, wR_2 = 0.2245$
R indices (all data)	$R_1 = 0.2356, wR_2 = 0.3476$
Largest diff. peak and hole (e Å ⁻³)	4.214 and -2.427

Table S5. Crystal data and structure refinement for **1-c**^a.

^{*a*} $R_1 = \sum (\Delta F / \sum (F_o)), wR_2 = (\sum [w(F_o^2 - F_c^2)]) / \sum [w(F_o^2)^2]^{1/2} \text{ and } w = 1/\sigma^2 (F_o^2).$

Fig. S1 Thermal ellipsoids given at 50% probability, showing the atomic labeling scheme of **1**, **2** and **3**, with white H atoms signed as white balls.

Fig. S2 Experimental PXRD patterns of 1, 2, 3, 1d and 2d, comparing with the simulated one for 3.

Fig. S3 TGA curves of as-synthesized 1.

Fig. S4 Experimental PXRD for 1-c, 2-c and 3-c and simulated PXRD pattern of 1-c.

Fig. S5 X-ray photoelectron spectra of (a) **1** and (b) **1-c**, the signal around 198 eV, which corresponding to Cl 2p, indicating the existence of Cl for the crystals.

Fig. S6 Asymmetric unit of **1-c**, shows three crystallographically distinct of Dy atoms.

Fig. S7 Structure of **1-c** along [001] direction, with 3-D intersection 6-ring channels along [001], [11], [211] and [12].

Fig. S8 M-H curve for (a) **1**; (b) **1-c** and (c) **2** at 2.00 K.

Fig. S9 Temperature-dependent in-phase (χ'_{M}) (up) and out-of-phase (χ''_{M}) (down) ac susceptibility components at different frequencies for complex **1** ((a) and (b)), **1-c** ((c) and (d)) and **2** ((e) and (f)) with applied dc field of 0 Oe (left) and 1000 Oe (right). The solid lines join the data points.

Fig. S10 Temperature dependent in-phase (χ'_{M}) (up) and out-of-phase (χ''_{M}) (down) ac susceptibility components at different frequencies for the diluted sample **1d** (with Dy/Y = 1/440) and the corresponding calcined sample **1d-c** with 500 Oe applied dc field. The solid lines join the data points.

Fig. S11 Temperature dependent in-phase (χ'_{M}) (up) and out-of-phase (χ''_{M}) (down) AC susceptibility components at different frequencies for the diluted sample **2d** (with Er/Y = 1/15) with applied DC field of 0 Oe (left) and 1000 Oe (right). The solid lines join the data points. Ac in the presence of a small external dc field of 1000 Oe show the presence of an out-of-phase signal, χ'' , for **2d** in contrast with **2**.