Electronic Supplementary Information of

Thioiminium and thiaphospholanium derived from acetonitrile *via* nickel(II)–(2-mercaptophenyl)phosphine complexations

Hao-Ching Chang,^a Yu-Chen Hsu,^a Chia-Hui Chen,^a Ting-Shen Kuo,^b and Way-Zen Lee^{*a}

^aDepartment of Chemistry and ^bInstrumentation Center, Department of

Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan

A. General Methods

All manipulations were performed under nitrogen using Schlenk techniques or glovebox. Acetonitrile was distilled once from P₂O₅, and freshly distilled from CaH₂ before usage; CH₂Cl₂ was distilled from CaH₂; Et₂O and THF were dried by distillation from sodium/benzophenone prior to use. All reagents were obtained from commercial sources and used as received without further purification. Bis(2-mercaptophenyl)phenylphosphine (H₂PS2) and (2-mercaptophenyl)diphenylphosphine (HPS1) were synthesized as reported procedure.¹ [Ni(CH₃CN)₆](ClO₄)₂ was prepared and crystallized from Ni(ClO₄)₂·6H₂O as literature.² NMR spectra were recorded on Bruker Avance-400 MHz or Avance-500 MHz FT NMR spectrometers. UV-vis spectra were recorded on Agilent 8453 spectrophotometers. IR spectra were recorded using KBr pellets on a Perkin-Elmer Paragon 500 spectrometer. Elemental analyses were performed on a Heraeus varioIII-NCH analyzer at the Instrumental Center at National Taiwan University, or Elementar vario EL III (CHN-OS rapid) at the Instrumental Center at National Chung Hsing University. ESI-MS spectra were recorded on a Thermo Finnigan LCQ Advantage spectrometer; isotope patterns were simulated by *IsoPro* 3.1 freeware.³

B. Synthetic Procedure

$Ni(P(o-C_6H_4S)(o-C_6H_4SH)(C_6H_5))_2$ (1)

A 3-mL CH₃CN solution of $[Ni(CH_3CN)_6](ClO_4)_2$ (99.4 mg, 0.20 mmol) was gradually transferred to a 12-mL CH₃CN solution of H₂PS2 (129.3 mg, 0.40 mmol) in a Schlenk flask. The reaction mixture became green immediately, and then green precipitate was formed. Supernatant liquid was removed after excess Et₂O adding to the reaction solution. The green solid was washed twice with Et₂O. Crystallization via vapor diffusion of Et₂O into a CH₂Cl₂ solution of **1** at room temperature over three days gave green crystals in 64% yield (89.3 mg). ¹H NMR (400 MHz, CDCl₃, δ): 8.03–7.95 (m, 2H), 7.79–7.72 (m, 2H), 7.53–7.46 (m, 4H), 7.46–7.29 (m, 6H), 7.26–7.14 (m, 6H), 7.14–7.07 (m, 1H), 7.06–6.97 (m, 2H), 6.97–6.91 (m, 1H), 6.91–6.85 (m, 2H). ³¹P{¹H} NMR (162 MHz, CDCl₃, δ): 53.6, 48.4. IR (KBr) $\bar{\nu}_{max}$: 2345 (w, SH) cm⁻¹. Anal. Calcd for **1**: C, 60.94; H, 3.98; S, 18.08. Found: C, 61.30; H, 3.92; N, 18.05. UV-vis (CH₂Cl₂) λ_{max} , nm (ϵ): 299 (40000), 410 (5800), 612 (180).

Fig. S1 UV/vis spectrum of 1 in CH₂Cl₂.

$[Ni(P(o-C_6H_4S)(o-C_6H_4SC(CH_3)=NH_2)(C_6H_5))_2](ClO_4)_2$ (2)

A 5-mL CH₃CN Solution of $[Ni(CH_3CN)_6](ClO_4)_2$ (100.8 mg, 0.20 mmol) was charged into an addition funnel and added dropwise to a 10-mL pre-heated CH₃CN solution (55–60 °C) of H₂PS2 (130.6 mg, 0.40 mmol) in a Schlenk flask for few hours. An olive solution was resulted and separated from green and brown precipitates which was assigned as a mixture of **1** and dinuclear $[Ni(PS2)]_2$ by ³¹P NMR.⁴ Excess Et₂O was added into the filtrate to precipitate and to wash the product twice. Yellow-green crystals suitable for X-ray analysis were obtained in 61% yield (122.1 mg) by vapor diffusion of Et₂O into the CH₃CN solution of **2** at -20 °C over one week. The structures of **2** and its geometric isomer **2'** were determined by X-ray crystallography. ¹H NMR (400 MHz, CD₃CN, δ): 9.44(br), 9.12 (br), 8.28 (br), 7.92–6.94 (m, 26H), 1.86 (s, 6H), 2.24 (s, minor signal for **2'**) ppm. ³¹P{¹H} NMR (162 MHz, CD₃CN, δ): 47.0, 52.5 (minor signal for **2'**) ppm. IR (KBr) $\bar{\nu}_{max}$: 1647 (C=N) cm⁻¹. Anal. Calcd for **2**·CH₃CN: C, 48.81; H, 3.80; N, 4.07. Found: C, 48.8; H, 4.07; N, 4.36. UV-vis (CH₂Cl₂) λ_{max} , nm (ϵ): 302 (37000), 368 (6600), 618 (75).

Fig. S2 UV/vis spectrum of 2 in CH₃CN.

$[(C_6H_5)P(C_6H_4SC(CH_3)(NHCOCH_3))(o-C_6H_4SH)](ClO_4) (3)$

A 10-mL CH₃CN solution of H₂PS2 (65.3 mg, 0.20 mmol) was injected with 2 equivalents of HClO₄(aq) (70%, ca. 57 μ L) and stired at 60 °C for 12 hours. The solvent was evaporated. Dry CH₂Cl₂ was added to the residual slurry, making it become white suspension. The insoluble was separated, evaporated, and redissolved in dry CH₃CN. After vapor diffusion of Et₂O into the CH₃CN solution at room temperature, colorless crystals of **3** were obtained in 48% yield (98.6 mg) over three days. ¹H NMR (400 MHz, CD₃CN, δ): 8.04 (br d, ${}^{3}J_{\text{HP}} = 9.2 \text{ Hz}, 1\text{H}, -\text{NHAc}), 7.93 \text{ (dd, } J = 14.4, 8.1 \text{ Hz}, 1\text{H}), 7.88-7.81 \text{ (m, 1H)}, 7.81-7.70 \text{ (m, 1H$ 3H), 7.64–7.54 (m, 7H), 7.41 (td, J = 7.8, 3.8 Hz, 1H) 4.88 (br s, 1H, SH), 2.31 (d, ${}^{2}J_{\text{HP}} = 16.2$ Hz, 3H, -CH₃) 1.56 (s, 3H, -COCH₃). ¹³C NMR (100 MHz, CD₃CN, δ): 171.9 (-NHC=O), 148.4 (d, J = 16.6 Hz), 137.9 (d, J = 11.0 Hz), 137.6 (d, J = 10.0 Hz), 137.2 (d, J = 7.3 Hz), 136.5 (d, J = 2.7 Hz), 136.4 (d, J = 3.0 Hz), 136.2 (d, J = 3.4 Hz), 135.2 (d, J = 10.3 Hz), 134.2 (d, J = 9.2 Hz), 131.2 (d, J = 13.2 Hz), 130.9 (d, J = 13.3 Hz), 129.4 (d, J = 12.7 Hz), 127.5 (d, J = 10.8 Hz), 124.1 (d, J = 8.3 Hz), 120.9 (d, ${}^{1}J_{CP} = 79.2$ Hz), 120.5 (d, ${}^{1}J_{CP} = 102.7$ Hz), 120.1 (d, ${}^{1}J_{CP} = 90.3$ Hz), 67.2 (d, ${}^{1}J_{CP} = 59.2$ Hz), 26.6 (d, J = 1.7 Hz), 22.0. ${}^{31}P{}^{1}H{}$ NMR (162 MHz, CD₃CN, δ): 54.8. Anal. Calcd for **3**: C, 51.71; H, 4.34; N, 2.74; S, 12.55. Found: C, 51.83; H, 4.08; N, 2.53; S, 12.86. A minor component observed in NMR (³¹P: 46.2 ppm) has a ca. 1:6 ratio to compound **3**. Accroding to the similar set of signals, including nitrile-derived carbons (¹³C: 68.1 25.8, 22.8 ppm), the minor one is probably a diasteromer of **3**. Notably, (R,R)- and (S,S)-form of **3** are packing together in the lattice.

$[(C_6H_5)_2P(C_6H_4SC(CH_3)(NH_3))](ClO_4)_2$ (5)

Three equivalents of HPS1 (352.6 mg, 1.20 mmol) was dissolved in 10 mL CH₃CN in a Schlenk flask. A 3-mL CH₃CN solution of [Ni(CH₃CN)₆](ClO₄)₂ (200.8 mg, 0.40 mmol) was then transferred into the HPS1 solution and reacted overnight at 55–60 °C. After cooling, a green precipitate of Ni(P(o-C₆H₄S)(C₆H₅)₂)₂ was removed by filtration. The filtrate was concentrated to minimum volume, following by addition of 10 mL anhydrous CH₂Cl₂ with stirring. A resulting white precipitate was isolated from the pale green CH₂Cl₂ solution. The precipitate was washed twice by dry CH₂Cl₂ and dissolved in anhydrous CH₃CN for crystallization by Et₂O vapor diffusion at room temperature. Hygroscopic compound **5** was isolated as colorless crystals in 56% yield (121.2 mg) over one week. ¹H NMR (400 MHz, CD₃CN, δ): 8.24–8.07 (m, 3H), 8.07–7.88 (m, 7H), 7.83 (dd, *J* = 8.1, 3.7 Hz, 1H), 7.83–7.77 (m, 2H), 7.74 (dt, *J* = 7.7, 4.1 Hz, 1H), 7.60 (br, NH), 2.18 (d, *J* = 14.2 Hz, 3H, –CH₃). ¹³C NMR (100 MHz, CD₃CN, δ): 145.6 (d, *J*_{CP} = 15.1 Hz), 139.6, 139.1, 138.4, 136.7, 136.6, 136.5 (d, *J*_{CP} = 10.8 Hz), 135.9, 135.8, 132.9, 132.8, 132.2, 132.1, 130.7 (d, *J*_{CP} = 11.7 Hz),

128.0 (d, J_{CP} = 9.0 Hz), 114.5 (d, ${}^{1}J_{CP}$ = 102.1 Hz), 112.9 (d, ${}^{1}J_{CP}$ = 83.9 Hz), 110.3 (d, ${}^{1}J_{CP}$ = 77.6 Hz), 69.5 (d, ${}^{1}J_{CP}$ = 58.0 Hz), 21.0. 31 P NMR (162 MHz, CD₃CN, δ): 47.2. Anal. Calcd for **5**: C, 44.79; H, 3.76; N, 2.61. Found: C, 44.79; H, 3.54; N, 2.45. ESI-MS m/z: 336.1 [**5**-H]⁺.

Fig. S3 ESI-MS spectrum of 5 (left) and simulation result (right).

$[(C_6H_5)_2P(C_6H_4SC(CD_3)(NH_3))](ClO_4)_2$ (5D)

As the same procedure of compound **5**, 179.4 mg HPS1 (0.61 mmol) and 101.9 mg $[Ni(CH_3CN)_6](ClO_4)_2$ (0.20 mmol) were reacted in 5 mL CD₃CN for 24 hours at 60 °C. After work-up, compound **5D** was crystallized by vapor diffusion method (CD₃CN/Et₂O) at room temperature. Yield: 52.5 mg (48%). 8.21–8.08 (m, 3H), 8.07–7.87 (m, 7H), 7.84 (dd, *J* = 8.2, 3.7 Hz, 1H), 7.84–7.77 (m, 2H), 7.74 (dt, *J* = 7.7, 4.1 Hz, 1H), 7.56 (br, NH). ³¹P NMR (162 MHz, CD₃CN, δ): 46.8. ESI-MS m/z: 339.3 [**5D**–H]⁺.

Fig. S4 ESI-MS spectrum of 5D (left) and simulation result (right).

Supporting information

Alternative way for **5**: HClO₄(aq) (70%, 150 μ L) was injected into the Schlenk flask charged with 7-mL CH₃CN solution of HPS1 (203.8 mg, 0.69 mmol). Then the reaction stired at about 65 °C for 20 hours. After cooling, solvent was evaporated. Glue-like product was washed with anhydrous CH₂Cl₂/Et₂O (5/10 mL) mixed solvent and resulted as white precipitate. The precipitate was washed again by dry Et₂O, dissolved in dry CH₃CN, and crystallized via vapor diffusion with Et₂O at room temperature. Colorless crystals were obtained two days later. By X-ray diffraction and NMR spectra, the crystal is identified as compound **5** (128.7 mg, 35% yield).

C. X-ray Structure Determination.

Crystals suitable for CCD X-ray diffractometer were selected under a microscope and mounted on the tip of a glass fiber fashioned on a copper pin. X-ray data for complexes 1, 2, 2', 3 and 5 were collected by a Brucker-Nonius Kappa CCD diffractometer employing graphite monochromated Mo K α radiation ($\lambda = 0.7107$ Å) at 200 or 296 K and a θ -2 θ scan mode. The space groups for complexes were determined on the basis of systematic absences and intensity statistics, and the structures of 1, 2, 2', 3 and 5 were solved by direct methods using SIR92 or SIR97, and refined using SHELXL-97. An empirical absorption correction by multiscans was applied to all structures. All non-hydrogen atoms were refined with anisotropic displacement factors. Hydrogen atoms were placed in ideal positions and fixed with relative isotropic displacement parameters. CIFs of 1, 2, 2', 3 and 5 are provided as supporting information.

References

- 1. E. Block, G. Ofori-Okai and J. Zubieta, J. Am. Chem. Soc., 1989, 111, 2327-2329.
- 2. A. E. Wickenden and R. A. Kruase, Inorg. Chem., 1965, 4, 404–407.
- 3. IsoPro 3.1 is available online https://sites.google.com/site/isoproms/.
- E. Cerrada, L. R. Falvello, M. B. Hursthouse, M. Laguna, A. Luquín and C. Pozo-Gonzalo, *Eur. J. Inorg. Chem.*, 2002, 826–833.

Crystallographic Data

$Ni(P(o-C_6H_4S)(o-C_6H_4SH)(C_6H_5))_2$ (1)

Table 1. Crystallographic parameters of 1

Empirical formula	$C_{36}H_{28}NiP_2S_4$	
Formula weight	709.47	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	$a = 11.1450(7) \text{ Å} \qquad \alpha = 90^{\circ}$	
	$b = 16.9903(10) \text{ Å} \qquad \beta = 90^{\circ}$	
	$c = 17.4117(10) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	3297.0(3) Å ³	
Z	4	
Density (calculated)	1.429 Mg/m ³	
Absorption coefficient	0.964 mm^{-1}	
F(000)	1464	
Crystal size	$0.35 \ge 0.30 \ge 0.11 \text{ mm}^3$	
Theta range for data collection	2.48 to 25.06°.	
Index ranges	$-12 \le h \le 13, -20 \le k \le 20, -18 \le l \le 20$	
Reflections collected	16125	
Independent reflections	2920 [R(int) = 0.0462]	
Completeness to theta = 25.06°	99.6%	
Absorption correction	multi-scan	
Max. and min. transmission	0.9013 and 0.7289	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2920 / 0 / 196	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	$R^1 = 0.0376, wR^2 = 0.0877$	
R indices (all data)	$R^1 = 0.0596$, $wR^2 = 0.0984$	
Largest diff. peak and hole	0.361 and -0.315 e.Å $^{-3}$	

[Ni(P(o-C₆H₄S)(o-C₆H₄SC(CH₃)=NH₂)(C₆H₅))₂](ClO₄)₂ (**2**)

Empirical formula C₄₈H₄₈Cl₂N₆NiO₈P₂S₄ Formula weight 1156.71 296(2) K Temperature 0.71073 Å Wavelength Triclinic Crystal system *P*-1 Space group Unit cell dimensions a = 9.5352(3) Å $\alpha = 80.481(2)^{\circ}$ b = 11.8573(5) Å $\beta = 73.240(2)^{\circ}$ c = 13.0288(6) Å $\gamma = 76.247(2)^{\circ}$ 1362.60(10) Å³ Volume Ζ 1 1.410 Mg/m^3 Density (calculated) 0.722 mm^{-1} Absorption coefficient F(000) 598 Crystal size $0.42 \ge 0.12 \ge 0.04 \text{ mm}^3$ 1.64 to 25.02°. Theta range for data collection $-9 \le h \le 11, -14 \le k \le 14, -15 \le l \le 15$ Index ranges Reflections collected 8561 Independent reflections 4672 [R(int) = 0.0404]Completeness to theta = 25.02° 97.0% Absorption correction multi-scan 0.9717 and 0.7514 Max. and min. transmission Full-matrix least-squares on F^2 Refinement method Data / restraints / parameters 4672 / 0 / 325 Goodness-of-fit on F^2 1.043 $R^1 = 0.0651$, $wR^2 = 0.1699$ Final R indices [I>2sigma(I)] $R^1 = 0.1183$, $wR^2 = 0.2237$ R indices (all data) 0.983 and -0.700 e.Å ⁻³ Largest diff. peak and hole

Table 2. Crystallographic parameters of 2

Isomeric [Ni(P(o-C₆H₄S)(o-C₆H₄SC(CH₃)=NH₂)(C₆H₅))₂](ClO₄)₂ (**2'**)

Table 3. Crystallographic parameters of 2'

Empirical formula	$C_{52}H_{47}Cl_2N_8NiO_9P_2S_4$	
Formula weight	1247.77	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>C</i> 2/c	
Unit cell dimensions	$a = 29.5398(18) \text{ Å} \qquad \alpha = 90^{\circ}$	
	$b = 14.4527(9) \text{ Å} \qquad \beta = 92.550(2)^{\circ}$	
	$c = 14.8710(10) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	6342.6(7) Å ³	
Z	4	
Density (calculated)	1.307 Mg/m^3	
Absorption coefficient	0.628 mm^{-1}	
F(000)	2572	
Crystal size	0.24 x 0.11 x 0.04 mm ³	
Theta range for data collection	2.06 to 25.38°.	
Index ranges	$-31 \le h \le 35, -16 \le k \le 17, -17 \le l \le 17$	
Reflections collected	21064	
Independent reflections	5775 [R(int) = 0.1575]	
Completeness to theta = 25.38°	99.1%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0445 and 0.8735	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5775 / 0 / 354	
Goodness-of-fit on F ²	1.099	
Final R indices [I>2sigma(I)]	$R^1 = 0.1098, wR^2 = 0.2648$	
R indices (all data)	$R^1 = 0.2123$, $wR^2 = 0.3394$	
Largest diff. peak and hole	0.961 and -0.780 e.Å $^{-3}$	

[P(C₆H₄SC(CH₃)(NHCOCH₃)](*o*-C₆H₄SH)(C₆H₅)](ClO₄) (**3**)

Table 4. Crystallographic parameters of 3

Empirical formula	C ₂₂ H ₂₁ ClNO ₅ PS ₂	$C_{22}H_{21}CINO_5PS_2$	
Formula weight	509.94		
Temperature	200(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 8.6493(3) Å	$\alpha = 109.381(2)^{\circ}$	
	b = 10.7076(4) Å	$\beta = 90.385(2)^{\circ}$	
	c = 13.9856(6) Å	$\gamma = 105.756(2)^{\circ}$	
Volume	1169.24(8) Å ³		
Z	2		
Density (calculated)	1.448 Mg/m^3		
Absorption coefficient	0.445 mm^{-1}		
F(000)	528		
Crystal size	0.3 x 0.18 x 0.05 mm ³		
Theta range for data collection	2.11 to 25.66°.		
Index ranges	$-10 \le h \le 10, -13 \le k \le 12, -17 \le l \le 17$		
Reflections collected	17425		
Independent reflections	4409 [R(int) = 0.0878]		
Completeness to theta = 25.66°	99.6%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0682 and 0.7373		
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²	
Data / restraints / parameters	4409 / 0 / 290	4409 / 0 / 290	
Goodness-of-fit on F ²	1.060		
Final R indices [I>2sigma(I)]	$R^1 = 0.0635, wR^2 = 0.1600$		
R indices (all data)	$R^1 = 0.0998, wR^2 = 0.0988, wR^2 = 0.09888, wR^2 = 0.09888, wR^2 = 0.0988, wR^2 = 0.0988, wR^2 = 0.0988, wR^$	$R^1 = 0.0998$, $wR^2 = 0.1981$	
Extinction coefficient	0.020(4)	0.020(4)	
Largest diff. peak and hole	0.810 and -0.503 e.Å	0.810 and –0.503 e.Å $^{-3}$	

$[P(C_6H_4SC(CH_3)(NH_3))(C_6H_5)_2](ClO_4)_2 (5)$

Table 5. Crystallographic parameters of 5

Empirical formula	$C_{20}H_{20}Cl_2NO_8PS$	
Formula weight	536.30	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	$a = 12.0439(7) \text{ Å}$ $\alpha = 90^{\circ}$	
	$b = 11.1901(7) \text{ Å} \qquad \beta = 102.248(2)^{\circ}$	
	$c = 17.4924(15) \text{ Å} \qquad \gamma = 90^{\circ}$	
Volume	2303.8(3) Å ³	
Z	4	
Density (calculated)	1.546 Mg/m^3	
Absorption coefficient	0.490 mm^{-1}	
F(000)	1104	
Crystal size	$0.25 \ge 0.2 \ge 0.07 \text{ mm}^3$	
Theta range for data collection	2.18 to 25.36°.	
Index ranges	$-11 \le h \le 14, -13 \le k \le 13, -21 \le l \le 20$	
Reflections collected	12792	
Independent reflections	4161 [R(int) = 0.0784]	
Completeness to theta = 25.36°	98.5%	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9781 and 0.8667	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4161 / 0 / 303	
Goodness-of-fit on F ²	1.038	
Final R indices [I>2sigma(I)]	$R^1 = 0.0655, wR^2 = 0.1540$	
R indices (all data)	$R^1 = 0.1138$, $wR^2 = 0.1795$	
Largest diff. peak and hole	0.937 and -0.419 e.Å^{-3}	