Supporting Information for

Synthesis of novel pyridyl containing phospholanes and their luminescent polynuclear copper(I) complexes

E.I. Musina,^{a,*} A.V. Shamsieva,^a I.D. Strelnik,^{a,b} T.P. Gerasimova,^a D.B. Krivolapov,^a

I.E. Kolesnikov, ^c E.V. Grachova, ^b S.P. Tunik, ^b C. Bannwarth, ^d S. Grimme, ^d S.A. Katsyuba, ^a

A.A. Karasik^a and O.G.Sinyashin^a

Contents

Figure S1 X-Ray molecular structure of complex 13.	S2		
Figure S2 Optimized structure of complex 14.	S2		
Table S1. Cartesian coordinates of the ground-state structure of complex 14,	S3		
optimized at PBE0-D3/def-TZVP level.			
Figure S3 Calculated (dashed lines) and experimental (solid line) absorption spectra	S4		
of compound 4			
Figure S4 Frontier molecular orbitals of compound 4.	S4		
Figure S5 Calculated absorption spectra of compounds 4 and 10-14.	S5		
Figure S6 Schematic representation of the molecular orbitals for the singlet ground	S5		
state of 12.			
Figure S7 ORTEP drawing of the molecular structure of complex 10.			
Figure S8 ORTEP drawing of the molecular structure of complex 12.			

a. A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia

^{b.} St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St Petersburg, Russia

^{c.} Center for optical and laser materials research, Research park of St. Petersburg State University, Ulianovskaya St. 5, 198504 St. Petersburg, Russia

^{d.} Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.

Figure S1 Molecular structure of complex 13*.

Colour legend: copper, light blue; nitrogen, blue; phosphorous, red; iodine, plum; carbon, grey; hydrogen, light grey.

Figure S2 Ground-state structure of complex 14, optimized at PBE0-D3/def-TZVP level.

* Picture was generated with DIAMOND Version 3.2k (Copyright Crystal Impact GbR)

Table S1. Cartesian coordinates of the ground-state structure of complex 14, optimized at PBE0-D3/def-TZVP level.

	X	V	Z
I	-2.912116794	1 372694119	-2.095563944
I	2.913161340	-1.373166896	-2.093801756
Cu	-1.302598769	0.611329494	-0.213858725
Cu	1 302652081	-0.611392869	-0.213105405
P	0.296773398	2.155383533	-0.394070732
Р	-0.296641847	-2.155473571	-0.393814239
N	-2.165013312	-0.815971299	0.912633756
N	2.164493671	0.816140215	0.913535262
С	-1.763374840	-2.084207490	0.718543911
С	-2.421280810	-3.152248255	1.305936035
С	-3.519809673	-2.894777980	2.111598716
С	-3.928150740	-1.586699955	2.300224596
С	-3.234996610	-0.555019457	1.678065740
С	-3.628411212	0.873406641	1.818821570
С	1.762934308	2.084340070	0.719041387
С	2.420460849	3.152472648	1.306689718
С	3.518846287	2.895177281	2.112605738
С	3.926822714	1.587100676	2.302020705
С	3.234202592	0.555338890	1.679403845
С	3.628394747	-0.872943249	1.819451622
Н	-2.092303257	-4.167646398	1.130751070
Н	-4.055597966	-3.710146568	2.584420049
Н	-4.781226058	-1.353673116	2.925103811
Н	-2.780232842	1.463633717	2.177422582
Н	-4.462523355	0.994208833	2.509355685
Н	-3.906910276	1.273296356	0.837688960
Н	2.091033876	4.167786792	1.131867184
Н	4.055130224	3.710711433	2.584575756
Н	4.778892046	1.354099159	2.928279616
Н	4.462390797	-0.993664023	2.510139682
Н	3.907381771	-1.272124241	0.838166174
Н	2.780453742	-1.463850373	2.177493989
С	1.301524129	3.792127687	-2.267622373
С	0.043303277	4.488799162	-1.760494100
С	1.086035911	2.298532940	-2.065407351
C	-0.301901877	3.915614505	-0.380790771
H	2.177427227	4.124846379	-1.699628244
H	0.352/90/61	1.903453394	-2.773269125
H	-0.783588636	4.2/1093325	-2.441753555
H	-1.376132954	3.910629199	-0.197014879
H	0.161059/28	5.5/4352994	-1./1/456550
H	0.1//542088	4.464509636	0.431//2220
H	1.983991606	1.682331272	-2.12/229/5/
H	1.492822529	4.021243520	-3.31894/362
C	-1.085041351	-2.298906496	-2.06554///5
C	-1.300854253	-5./92526516	-2.20/282924
C	0.30202/952	-3.913091108	-0.3/99/6995
	-0.042892844	-4.489244269	-1./393/49/2
п	-0.331292032	-1.904322919	-2.//3139032
п	-2.1/0900333	-4.1248434/0	-1.0993/3204
п	-0.1//002082	-4.404391033	0.452000250
п	0.160922272	-3.91004/332	-0.193908349
п	-0.100622572	-3.374700440	-1./10/11/143
п	1 /010/5715	4.2/1003/49	2 218570111
п	-1.471743/13	-4.021900339	-3.3103/0111
11	-1.704/0/41/	-1.002443/40	-2.120044930

Figure S3 Calculated (dashed lines) and experimental (solid line) absorption spectra of compound **4**. Experimental bands at 281 and 255 nm correspond to computed lines at 261, 251, 248 and 235 nm. Main contributions arise from transitions between HOMO-1, HOMO and LUMO, LUMO+1, depicted at Figure S4. The HOMO is localized on both the π orbitals of pyridyl moiety and the lone pair of P atom. HOMO-1 involves both the π orbitals of pyridyl moiety and the lone pair of N atom. LUMO and LUMO+1 are localised mainly on π^* orbitals of pyridyl moiety. Thus, the experimetal bands should be assigned to transitions of mixed $n-\pi^*$ and $\pi-\pi^*$ character.

Figure S4 Frontier orbitals of 4.

HOMO-1

LUMO

LUMO+1

Figure S5 Calculated absorption spectra of compounds 4 and 10-14.

Figure S6 Schematic representation of the molecular orbitals for the singlet ground state of 12.

Figure S7 ORTEP drawing of the molecular structure of complex 10^{*}. Hydrogen atoms are omitted for clarity.

Figure S8 ORTEP drawing of the molecular structure of complex 12^{*}. Hydrogen atoms are omitted for clarity.

