Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis and Structures of Mononuclear and Dinuclear Gallium Complexes with α-Diimine Ligands: Reduction of Metal or Ligand?

Yanxia Zhao^a*, Yanyan Liu^a, Qian-Shu Li^b, Ji-Hu Su^c

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China. E-mail: zhaoyx@nwu.edu.cn

^b Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, China

c Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

Table of contents:

S1. Experimental details

Table S1. Crystal data and refinement details for compounds 2–6.

Fig. S1. EPR spectrum of complex 3.

Fig. S2. The solid-state EPR signal of compound 5 at roomtemperature.

S2. DFT computations

Figure S3. Optimized structures of 2H–6H and their selected bond lengths and bond orders.

 Table S2.Natural charges of the model compounds 1H-6H.

Table S3–S7.Cartesian coordinates of the optimized geometry for 2H–6H.

Experimental Section

Compound	2	3	4
Empirical formula	C44H72Cl2GaN2NaO4	$C_{80}H_{128}Ga_2N_4NaO_6\\$	$C_{35}H_{48}Cl6Ga_2N_2$
Fw	856.65	1404.29	848.89
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> 2(1)/n	<i>P</i> 2(1)
<i>a</i> /Å	15.511(1)	13.817(1)	12.039(1)
b /Å	13.646(1)	17.598(1)	13.907(1)
c /Å	22.867(2)	32.893(3)	12.714(1)
lpha /°	90	90	90
$eta/^{\circ}$	95.466 (1)	94.644(1)	105.968(1)
$\gamma / ^{\circ}$	90	90	90
$V/\text{\AA}^3$	4817.8(7)	7971.5(1)	2046.5(3)
Ζ	4	4	2
$D_{\text{calc}}/\text{g cm}^{-3}$	1.181	1.170	1.378
F (000)	1832	3028	872
μ /mm ⁻¹	0.730	0.732	1.734
Reflns collected	23915	51542	13599
Independent	8497	13968	7029
reflns			
$(R_{\rm int})$	0.0312	0.0594	0.0230
Observed reflns[I	6246	9424	6710
>2 <i>o</i> (<i>I</i>)]			
$R_1; wR_2 [I > 2\sigma(I)]$	0.0444; 0.1362	0.1053; 0.1926	0.0262; 0.0281
R_1 ; wR_2 (all data)	0.0666; 0.1556	0.1472; 0.2123	0.0605; 0.0614
GOF (F^2)	1.057	1.123	1.007

 Table S1. Crystallographic data and refinement details for compounds 2–7.

Compound	5	6
Empirical formula	$C_{48}H_{64}Cl_2Ga_2N_4$	$C_{40}H_{48}Cl_2Ga_2N_4$
Fw	907.38	795.16
Crystal system	Monoclinic	Triclinic
Space group	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> -1
a /Å	21.791(1)	8.3517(19)

b /Å	13.884(1)	11.301(3)
<i>c</i> /Å	15.558(1)	11.780(3)
lpha /°	90	116.796(3)
eta /°	91.794(1)	92.365(4)
$\gamma/^{\circ}$	90	93.472(4)
$V/\text{\AA}^3$	4704.5(4)	987.7(4)
Z	4	1
$D_{\text{calc}}/\text{g cm}^{-3}$	1.267	1.337
<i>F</i> (000)	1864	412
μ /mm ⁻¹	1.294	1.531
Reflns collected	23344	4927
Independent reflns	8294	3430
$(R_{\rm int})$	0.0286	0.0228
Observed reflns[$I > 2\sigma(I)$]	6033	2621
$R_1; wR_2 [I > 2\sigma(I)]$	0.0429; 0.0911	0.0443; 0.0946
R_1 ; wR_2 (all data)	0.0653; 0.1006	0.0662; 0.1052
GOF (F^2)	1.067	1.006

Fig. S1. EPR spectrum of complex 3

Fig. S2. The solid-state EPR spectrum of 5 recorded at room temperature

S2. DFT computations

The structure optimization and NBO bonding analysis for the compound $[(L'Ga(\mu_2-Cl)_2Na(H_2O)_4]$ (2H), [L'GaGaL']⁻ (3H) [LGaCl2][GaCl4] [(LGaCl_2)•(GaCl_4)] (4H) (L' = (NArCH)_2), [(L^{EI})ClGa–GaCl(L^{EI})] (5H) and $[(L^{Me})ClGa–GaCl(L^{Me})]$ (6H) were carried out at the DFT (B3LYP) level with a 6-31g* basis set using the Gaussian 09 program.¹ The B3LYP method is a hybrid of the HF and DFT methods, incorporating Becke's three-parameter exchange functional (B3)² with the Lee, Yang, and Parr (LYP) correlation functional. Geometry optimizations gave bond distances that were in good agreement with the X-ray structures.Bonding analyses were performed by means of natural bond orbital (NBO) analysis and natural population analysis (NPA). Wiberg bond indices (WBI) were evaluated with Weinhold's natural bond orbital method.³

Fig. S3. Optimized structures of 2H–6H and their selected bond lengths (black) and bond orders (red).

	1H	2Н	3Н	5H	6H
Ga	1.415	1.561	0.533, 0.476	1.077	1.075
L	-0.461	-1.314	-1.010	-0.550	-0.546

Table S2.Natural charges of the model compounds 1H–6H.

Table S3. Cartesian coordinates of the optimized geometry for 2H.

Ga	-0.54093100	0.32425000	0.24318900	С	-6.01626000	-0.78813100	-0.47467000
Na	1.89977700	-2.87049500	-0.56751200	Н	-6.97675200	-1.28033200	-0.61769000
Cl	-0.12981500	-1.07768900	2.03931800	С	-5.84750900	0.56476500	-0.80123600
Cl	0.11169500	-1.00051300	-1.47589600	Н	-6.68185400	1.13322700	-1.21264300
Ν	-2.25877400	1.09817500	0.09749400	С	-4.61593500	1.20528800	-0.62361500
Ν	0.26909000	2.04023400	0.25345000	С	1.60067200	2.40893100	0.12065100
0	3.58330100	-3.70756800	-1.89873200	С	2.00393600	3.60227500	-0.53022800
0	2.80761500	-2.32159300	1.66484400	С	3.35741100	3.93690000	-0.64152800
0	3.86164000	-1.26738200	-0.72224300	Н	3.63180800	4.85862200	-1.15481400
0	0.17979300	-4.00361500	0.54274800	С	4.35884700	3.10467100	-0.11887800
С	-2.05952600	2.48835500	0.07810100	Н	5.40982800	3.37468700	-0.20333100
С	-0.78764900	2.96537800	0.14441700	С	3.97153800	1.92222400	0.53328700
С	-3.50469100	0.50340300	-0.09685500	Н	4.72969000	1.28281800	0.98867600
С	-3.68708700	-0.86185400	0.23070100	С	2.62053000	1.57837700	0.65242400
С	-4.91720500	-1.49410400	0.04088800	Н	2.33002400	0.69521500	1.22131700
Н	-5.02249100	-2.54536400	0.31025000	Н	1.25312900	4.25157000	-0.97487600

Н	-2.85675400	-1.41957500	0.66416600	Н	3.72840000	-0.31544500	-0.87652800
Н	-4.51257700	2.24609000	-0.92136700	Н	3.90425700	-1.36431500	0.24699300
Н	-0.21356600	-3.28355800	1.07427100	Н	3.10301200	-2.94426500	2.34580700
Н	-0.56999900	-4.47433200	0.15038800	Н	2.03130100	-1.85747200	2.04479800
Н	3.90026300	-4.19749800	-2.66874700	Н	-0.57527400	4.02737300	0.22263600
Н	4.09040900	-2.87391500	-1.84461000	Н	-2.91694000	3.15315400	0.10059500

Table S4. Cartesian coordinates of the optimized geometry for $\mathbf{3H}$

Ga	-0.46083500	1.25307900	1.01466900	С	4.65564000	-0.39592500	0.45948300
Ga	0.66126900	-0.81702300	0.30733400	С	-1.94247000	2.14163100	-1.21877000
Ν	0.44533300	-2.41632200	-0.74490400	С	-2.85948500	1.43875900	-0.46598600
Ν	2.44125200	-1.47990100	0.60198000	С	-2.28791400	2.72858900	-2.56895500
Ν	-0.63359400	2.18279000	-0.73705000	Н	-1.39770700	2.79410100	-3.20099000
Ν	-2.38266500	0.83153600	0.69824900	Н	-2.72141900	3.73899400	-2.51985800
С	1.60681200	-3.21016400	-0.74909900	Н	-3.01502600	2.10134900	-3.09432000
С	2.66864500	-2.70968900	-0.04093700	С	-4.27834600	1.20392600	-0.93366200
С	1.56095000	-4.58586200	-1.36709000	Н	-4.31762800	1.07941400	-2.02060300
Н	2.32495700	-5.24200900	-0.94204600	Н	-4.97376000	2.01990900	-0.68420600
Н	1.70739800	-4.58883200	-2.45595700	Н	-4.68503700	0.29090400	-0.48987100
Н	0.58553600	-5.05407800	-1.18570900	С	0.35824200	3.03525400	-1.21386100
С	3.95847600	-3.44684300	0.21433300	С	1.70711800	2.61013100	-1.14532200
Н	3.87230600	-4.50726900	-0.03508200	С	2.74905000	3.42818000	-1.56401700
Н	4.24060000	-3.37507600	1.27306900	Н	3.76892100	3.05493000	-1.49924300
Н	4.80972600	-3.05396300	-0.35800500	С	2.49909800	4.71208400	-2.06069700
С	-0.63982100	-2.63738800	-1.60464700	Н	3.31573300	5.34933200	-2.39122600
С	-0.48165300	-2.88641000	-2.98441300	С	1.17769700	5.16109500	-2.10933400
С	-1.58673200	-3.05759100	-3.81556000	Н	0.95751400	6.16633200	-2.46571800
Н	-1.43040600	-3.25158500	-4.87523800	С	0.12753900	4.35035500	-1.68150000
С	-2.88402200	-2.95314900	-3.30801000	С	-3.18988200	0.33308400	1.71355900
Н	-3.74519700	-3.08127600	-3.95929000	С	-4.44352500	0.87527000	2.08606800
С	-3.05439800	-2.67284000	-1.94985500	С	-5.18137800	0.33689800	3.13850100
Н	-4.05504600	-2.57886800	-1.53380700	Н	-6.14203600	0.78292800	3.39180500
С	-1.95424900	-2.51625900	-1.11028000	С	-4.69660400	-0.74149400	3.88242800
С	3.46782100	-0.70197900	1.15686900	Н	-5.27521700	-1.15590600	4.70426700
С	3.28099100	-0.10607800	2.42032700	С	-3.44290000	-1.26751100	3.55206300
С	4.25044600	0.72818200	2.97205800	Н	-3.03517200	-2.10162400	4.12004900
Н	4.07591900	1.17056900	3.95034700	С	-2.70393600	-0.74255800	2.49865500
С	5.43573400	0.99840100	2.28366100	Н	-0.88310600	4.74338600	-1.68235700
Н	6.19199800	1.64747200	2.71802700	Н	1.92145500	1.61038300	-0.77856600
С	5.62857900	0.42703200	1.02351600	Н	-1.73804400	-1.17167500	2.24633400
Н	6.53547200	0.64215500	0.46131100	Н	-4.82233800	1.74400700	1.55925000

Н	-2.10084300	-2.32918600	-0.05083200	Н	4.79457300	-0.79251300	-0.54174500
Н	0.51991000	-2.91829300	-3.40167800	Н	2.37710800	-0.34122700	2.97470900

Table S5. Cartesian coordinates of the optimized geometry for 4H

Ga	-2.53547000	0.39879300	-0.35689000	С	-1.84822300	5.02828400	0.09704000
Cl	-4.46901100	0.78854000	0.54687200	Н	-2.69241000	5.70673600	0.17436600
Cl	-2.35443900	0.38876600	-2.48721900	С	-2.02228100	3.68111900	0.40315500
Ν	-1.12909400	1.42845200	0.59449300	С	-2.05882900	-2.49017100	0.29309900
Ν	-1.68129300	-1.13747600	0.56613700	С	-1.10711900	-3.39100700	-0.20268900
С	-0.39564700	0.69561800	1.37339800	С	-1.51138300	-4.68067500	-0.54423100
С	-0.72753000	-0.78387600	1.36958100	Н	-0.77855400	-5.38085500	-0.93343400
С	0.69470100	1.20892600	2.24982100	С	-2.84696700	-5.06307000	-0.40352200
Н	0.60476700	2.28700600	2.39182700	Н	-3.15444700	-6.06966800	-0.67081700
Н	1.67571300	1.01501000	1.79549100	С	-3.79029000	-4.14797900	0.07014600
Н	0.68233900	0.70629200	3.21988100	Н	-4.83091500	-4.44006100	0.17375900
С	-0.00630700	-1.69772500	2.29860300	С	-3.40783400	-2.84870300	0.39759900
Н	-0.39468500	-2.71354600	2.24070800	Ga	3.55209200	-0.46952500	-0.21652200
Н	-0.12276900	-1.33056800	3.32585300	Cl	1.45404000	-0.64183600	-1.01020900
Н	1.07183800	-1.71321400	2.08628400	Cl	3.81708800	1.66946800	0.32027500
С	-0.91956800	2.81827200	0.33765000	Cl	4.99211200	-1.16702800	-1.68119500
С	0.32867900	3.27525700	-0.10609300	Cl	3.59644500	-1.65552000	1.66229700
С	0.47848000	4.62290700	-0.42981900	Н	-4.13285900	-2.13661800	0.77918200
Н	1.44442100	4.97733600	-0.77590500	Н	-0.07957700	-3.07018900	-0.34583900
С	-0.60193600	5.50051000	-0.32381900	Н	-2.98408800	3.31304200	0.74644200
Н	-0.47671400	6.54926600	-0.57632800	Н	1.16169200	2.58914400	-0.22359800

Table S6. Cartesian coordinates of the optimized geometry for 5H

Ga	0.77662400	-0.89609300	-0.32822000	 С	5.80894900	0.27961900	-0.04936600
Ν	2.45923700	-1.18751800	0.63849200	Н	6.66427800	0.09242900	-0.69450700
Ν	0.40163400	-2.73757300	0.25446900	С	5.83934700	1.33942300	0.85015200
Cl	1.11538600	-0.87474100	-2.55482200	Н	6.71284100	1.98408100	0.90633600
С	3.48535300	-2.59538000	2.40917300	С	4.74932700	1.56730000	1.68712200
Н	4.45697800	-2.75131600	1.92310600	Н	4.77903300	2.39671200	2.38595300
Н	3.26103800	-3.47609800	3.01073700	С	3.61598900	0.74786700	1.64666200
Н	3.61347700	-1.74694900	3.09103100	С	4.72684300	-1.71583900	-1.13026200
С	2.40913500	-2.31199100	1.39730500	Н	5.60021400	-2.34570600	-0.90819500
С	1.29430800	-3.16128200	1.18198700	Н	3.84408000	-2.34777000	-1.00675000
С	1.06951400	-4.44068600	1.94358600	С	4.80116000	-1.25439700	-2.59535300
Н	0.53880600	-5.16875400	1.32483600	Н	3.90857500	-0.68049200	-2.85649800
Н	0.45564500	-4.27700400	2.84074100	Н	4.85440900	-2.11979000	-3.26603700
Н	2.00975600	-4.89332800	2.26385000	Н	5.68367400	-0.63148000	-2.78006400
С	3.59899900	-0.32050400	0.71883800	С	2.43582500	1.00805500	2.56780700
С	4.69533000	-0.56560200	-0.13770000	Н	1.75222600	1.71671800	2.08305900

Н	1.85119100	0.09264800	2.69088400	C	2	-5.80894900	-0.27961900	0.04936600
С	2.78747200	1.55931600	3.95619700	H	ł	-6.66427800	-0.09242900	0.69450700
Н	3.22605500	2.56145700	3.90610900	C	2	-5.83934700	-1.33942300	-0.85015200
Н	3.49619300	0.90837200	4.48236900	E	ł	-6.71284100	-1.98408100	-0.90633600
Н	1.87775900	1.63273000	4.56122100	C	2	-4.74932700	-1.56730000	-1.68712200
С	-0.74029900	-3.52881200	-0.09716900	H	ł	-4.77903300	-2.39671200	-2.38595300
С	-1.94699400	-3.41109300	0.62243300	C	2	-3.61598900	-0.74786700	-1.64666200
С	-3.04779800	-4.16496400	0.19081600	C	2	-4.72684300	1.71583900	1.13026200
Н	-3.99352400	-4.06881300	0.71554300	H	ł	-5.60021400	2.34570600	0.90819500
С	-2.95247100	-5.02123800	-0.89896900	H	ł	-3.84408000	2.34777000	1.00675000
Н	-3.81712100	-5.59953600	-1.21475500	C	2	-4.80116000	1.25439700	2.59535300
С	-1.74401800	-5.14461400	-1.58499900	H	ł	-3.90857500	0.68049200	2.85649800
Н	-1.67728900	-5.82715300	-2.42577100	H	ł	-4.85440900	2.11979000	3.26603700
С	-0.62114200	-4.40384800	-1.20645500	H	ł	-5.68367400	0.63148000	2.78006400
С	-2.08396400	-2.48690900	1.82000600	C	2	-2.43582500	-1.00805500	-2.56780700
Н	-1.10415000	-2.11278500	2.12496200	H	ł	-1.75222600	-1.71671800	-2.08305900
Н	-2.65486700	-1.59828100	1.51952300	H	ł	-1.85119100	-0.09264800	-2.69088400
С	-2.76492600	-3.11998400	3.04364700	C	2	-2.78747200	-1.55931600	-3.95619700
Н	-3.79914800	-3.41572200	2.83860600	H	ł	-3.22605500	-2.56145700	-3.90610900
Н	-2.78592000	-2.40209600	3.87065000	H	ł	-3.49619300	-0.90837200	-4.48236900
Н	-2.22600700	-4.01327900	3.38147900	H	ł	-1.87775900	-1.63273000	-4.56122100
С	0.70512600	-4.52994800	-1.94042400	C	2	0.74029900	3.52881200	0.09716900
Н	0.93509700	-3.57052100	-2.41999400	C	2	1.94699400	3.41109300	-0.62243300
Н	1.50582700	-4.67589800	-1.20343900	C	2	3.04779800	4.16496400	-0.19081600
С	0.78908900	-5.64375400	-2.98834600	H	ł	3.99352400	4.06881300	-0.71554300
Н	0.08276000	-5.48578400	-3.81125700	C	2	2.95247100	5.02123800	0.89896900
Н	0.58675000	-6.63080900	-2.55581500	H	ł	3.81712100	5.59953600	1.21475500
Н	1.79418100	-5.66930300	-3.42267100	C	2	1.74401800	5.14461400	1.58499900
Ga	-0.77662400	0.89609300	0.32822000	H	ł	1.67728900	5.82715300	2.42577100
Cl	-1.11538600	0.87474100	2.55482200	C	2	0.62114200	4.40384800	1.20645500
Ν	-2.45923700	1.18751800	-0.63849200	C	2	2.08396400	2.48690900	-1.82000600
Ν	-0.40163400	2.73757300	-0.25446900	H	ł	1.10415000	2.11278500	-2.12496200
С	-3.48535300	2.59538000	-2.40917300	H	ł	2.65486700	1.59828100	-1.51952300
Н	-4.45697800	2.75131600	-1.92310600	C	2	2.76492600	3.11998400	-3.04364700
Н	-3.26103800	3.47609800	-3.01073700	H	ł	3.79914800	3.41572200	-2.83860600
Н	-3.61347700	1.74694900	-3.09103100	H	ł	2.78592000	2.40209600	-3.87065000
С	-2.40913500	2.31199100	-1.39730500	H	ł	2.22600700	4.01327900	-3.38147900
С	-1.29430800	3.16128200	-1.18198700	C	2	-0.70512600	4.52994800	1.94042400
С	-1.06951400	4.44068600	-1.94358600	H	ł	-0.93509700	3.57052100	2.41999400
Н	-0.53880600	5.16875400	-1.32483600	H	ł	-1.50582700	4.67589800	1.20343900
Н	-0.45564500	4.27700400	-2.84074100	C	2	-0.78908900	5.64375400	2.98834600
Н	-2.00975600	4.89332800	-2.26385000	H	ł	-0.08276000	5.48578400	3.81125700
С	-3.59899900	0.32050400	-0.71883800	H	ł	-0.58675000	6.63080900	2.55581500
С	-4.69533000	0.56560200	0.13770000	H	ł	-1.79418100	5.66930300	3.42267100

_

_

Ga 0.03041200 1.16015100 0.38128200 Η -2.73755900 -0.08855500 -2.00582700 Cl 0.01393000 1.20759100 2.63743900 Η -1.90866800 1.34919200 -2.56976900 Ν 1.37412800 2.40773600 -0.30996700 Η -3.56224700 1.00391500 -3.11422900 2.47987200 -0.32929100 С -2.37495300 3.96130300 1.85234000 Ν -1.23507400 С 1.65757800 4.27324400 -1.93267800 Η -1.73062200 3.30891300 2.45149700 Η 2.46069600 4.71761700 -1.33443100 Η -3.00345700 4.54253700 2.53436500 Η 1.06987100 5.08007500 -2.37228600 Η -1.713298004.65823000 1.32500400 2.14374500 3.72977900 -2.75393100 -0.03041700 Η Ga -1.16012500 -0.38124500 С 0.80829600 3.35538400 -1.09749500 Cl -0.01392100 -1.20754800 -2.63740300 0.30997700 С -0.60938700 3.39770300 -1.10715700 Ν -1.37412800 -2.40773200С -1.95749200 1.23507300 -2.47985000 0.32930900 -1.37906600 4.37515600 Ν Η -2.43248500 4.39165400 -1.67332800 С -1.65757000 -4.273297001.93262400 Η -1.32883900 4.11402700 -3.02346900 Η -2.46065100 -4.71769600 1.33434800 Η -0.98705300 5.39205300 -1.85402000 Η -1.06984800 -5.08010900 2.37224700 С 2.79768800 2.32616900 -0.16953700 Η -2.14378400 -3.72985400 2.75386300 С 3.39706600 3.01394200 0.91066900 С -0.80829100 -3.35540100 1.09747800 4.78458700 2.93442600 1.06305100 С 0.60939000 -3.39770900 1.10714600 С Η 5.25438900 3.46565100 1.88737200 С 1.37907100 -4.37518800 1.95745100 С 5.56475900 2.19451500 0.17567000 Η 2.43248600 -4.39169100 1.67327000 6.64269400 2.14639900 0.30687400 1.32886400 -4.11408000 3.02343500 Η Η 4.95903300 -0.88296800 0.98704600 -5.39207900 С 1.52618300 Η 1.85396400 С Η 5.56274700 0.94694300 -1.57715500 -2.79768800 -2.32618800 0.16953100 С С -3.39702100 -3.01389900 3.57196400 1.57646900 -1.07675600 -0.91074000 С 2.57064900 3.83019100 1.87721600 С -4.78454100 -2.93442400 -1.06314400 Η 3.21996100 4.39120500 2.55669100 Η -5.25430800 -3.46560000 -1.88751700 Η 1.91284200 3.19346600 2.47871000 С -5.56475900 -2.19461400 -0.17571900 1.92290800 4.54642700 1.35853000 Η -6.64269300 -2.14652900 Η -0.30693900 С С -4.95907900 2.95544800 0.81962600 -2.22976600 -1.52634700 0.88298600 Η 2.00166300 1.24127000 -2.55345400 Η -5.56282900 -0.94718800 1.57721000 С Η 2.75618200 -0.22415300 -1.96137700 -3.57201100 -1.57659300 1.07679600 Η 3.63779400 0.80481400 -3.08658500 С -2.57055200 -3.83003200 -1.87734100 С -2.66022400 2.45648900 -0.18703800 Η -3.21982800 -4.39103000 -2.55686400 С -3.46481100 1.73459500 -1.09110100 Η -1.91277300 -3.19322500 -2.47878100 С -4.85140500 1.72658200 -0.88720700 Η -1.92277600 -4.54627100 -1.35870400 С Η -5.47753700 1.16831700 -1.57867100 -2.95555600 -0.81983400 2.22989400 С -5.42838700 2.41076200 0.17718600 Η -2.00175100 -1.24145600 2.55355200 Η -6.50622100 2.39517800 Η -2.75635000 0.22398600 0.31666300 1.96161800 С -4.61931400 3.12743200 1.05778400 Η -3.63791600 -0.80515400 3.08670400 С 2.66022300 0.18704800 Η -5.06666600 3.67442800 1.88425300 -2.45645300 С -3.23113600 3.16482100 0.89551200 С 3.46482000 -1.73460400 1.09113800 С -2.88259800 С 0.96865200 -2.25581400 4.85141200 -1.72658500 0.88723200

Table S7. Cartesian coordinates of the optimized geometry for **6H**

Н	5.47755300	-1.16835700	1.57871800	-	Н	2.73758900	0.08849900	2.00597900
С	5.42838400	-2.41071300	-0.17720100		Н	1.90869600	-1.34927700	2.56984700
Н	6.50621600	-2.39512400	-0.31668700		Н	3.56228400	-1.00403900	3.11430500
С	4.61930100	-3.12734000	-1.05782400		С	2.37493100	-3.96117500	-1.85239400
Н	5.06664500	-3.67429800	-1.88432400		Н	1.73059700	-3.30875700	-2.45151900
С	3.23112400	-3.16473700	-0.89553900		Н	3.00342700	-4.54238200	-2.53445000
С	2.88262500	-0.96872300	2.25590100		Н	1.71327700	-4.65812000	-1.32508300

References:

References:

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, (2004).

[2] A. D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.

[3] (a) K. B. Wiberg, Tetrahedron24 (1968), 1083–1096;(b) A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899–926.