# Assembly and Stabilization of $\left\{\mathrm{E}\left(\text { cyclo- } \mathrm{P}_{3}\right)_{2}\right\}(\mathrm{E}=\mathrm{Sn}, \mathrm{Pb})$ as a Bridging Ligand Spanning Two Triaryloxyniobium Units 

Alexandra Velian, Brandi M. Cossairt, Christopher C. Cummins*

September 29, 2015

## Table of Contents

S. 1 Experimental Section ..... 2
S.1.1 General information ..... 2
S.1.2 $\mathrm{Sn}\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{2}\left(\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}\right)$ ..... 2
S.1.3 (THF) $\operatorname{Sn}\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{2}\left((\mathrm{THF}) \mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}\right)$ ..... 3
S.1.4 (THF) $2_{2} \mathrm{~Pb}\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{2}\left((\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}\right)$ ..... 4
S.1.5 $\left[\mathrm{AgP}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{4}\left(\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}\right)$ ..... 4
S.1.6 $\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{2}(\mathrm{py})_{2}\left(2-\mathrm{P}_{3}\right)$ ..... 7
S.1.7 Generation of $\left[\mathrm{KP}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{2}$ from 2- $\mathrm{P}_{3}$ and KODipp ..... 7
S.1.8 Synthesis of $\mathrm{AsP}_{3}$ from 2- $\mathrm{P}_{3}$ and $\mathrm{AsCl}_{3}$ ..... 8
S.1.9 Solid state structure of $\left[1-\mathrm{P}_{3}(\mathrm{py})\right]_{2}$ ..... 8
S.1.10 Treatment of (THF) $\operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ with pyridine- $N$-oxide ..... 9
S. 2 Characterization of the black material formed in the reaction of (THF) $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ with $\mathrm{Py}-\mathrm{O}$ ..... 9
S. 3 X-ray Diffraction Studies ..... 14

[^0]
## S. 1 Experimental Section

## S.1.1 General information

All manipulations were performed in a Vacuum Atmospheres model MO-40M glove box under an inert atmosphere of purified $\mathrm{N}_{2}$. All solvents were obtained anhydrous and oxygen-free by bubble degassing $\left(\mathrm{N}_{2}\right)$ and purification through columns of alumina and Q5 using a Glass Contours Solvent Purification System built by SG Water.
$\mathrm{Na}(\mathrm{THF})_{3}\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]^{1}$ and KODipp were prepared according to the literature procedure. ${ }^{2}$ Anhydrous $\mathrm{SnCl}_{2}$ (purity, $98 \%$ ), $\mathrm{PbCl}_{2}$ (purity, $99 \%$ ) and $\operatorname{AgOTf}\left(\mathrm{Tf}=\mathrm{SO}_{2} \mathrm{CF}_{3}\right.$; purity, $99 \%$ ) were purchased from Strem Chemicals and used without further purification. Pyridine- $N$-oxide (purity, $95 \%$ ) was purchased from Aldrich and purified by sublimation before use. Deuterated solvents were purchased from Cambridge Isotope Labs. Benzene- $d_{6}$ was degassed and stored over molecular sieves ( $4 \AA$ beads, $8-12$ mesh) for at least 2 days prior to use. Celite 435 (EM Science) was dried by heating above $200{ }^{\circ} \mathrm{C}$ under dynamic vacuum for at least 24 h prior to use. All glassware was oven-dried for at least 3 h prior to use, at temperatures greater than $150^{\circ} \mathrm{C}$. NMR spectra were obtained on Bruker Avance 400 instruments equipped with Magnex Scientific superconducting magnets or on Varian Inova 300 and 500 instruments equipped with Oxford Instruments superconducting magnets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to residual solvent proton resonances in benzene- $d_{6}\left({ }^{1} \mathrm{H}=7.16 \mathrm{ppm},{ }^{13} \mathrm{C}=128.06 \mathrm{ppm}\right.$, respectively). ${ }^{31} \mathrm{P}$ NMR spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0 \mathrm{ppm})$. Elemental combustion and Inductively Coupled Plasma analyses were performed by Midwest Microlab LLC, Indianapolis, IN; by Robertson Microlit Laboratories or by ALS Environmental (formerly Columbia Analytical Services, Inc.).

## S.1.2 $\operatorname{Sn}\left[\mathrm{P}_{3} \mathrm{Nb}(\text { ODipp })_{3}\right]_{2}\left(\operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}\right)$

A 100 mL Schlenk flask equipped with a Teflon-coated stir bar was charged with $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[1-\mathrm{P}_{3}\right](1.000 \mathrm{~g}, 1.04 \mathrm{mmol}$, 2 equiv), $\mathrm{SnCl}_{2}$ ( $100 \mathrm{mg}, 0.53 \mathrm{mmol} .2 .02$ equiv) and benzene ( 50 mL ). The flask was placed in an oil bath, pre-heated at $70^{\circ} \mathrm{C}$, and after 2 h the initially bright orange mixture changed color to dark orange-red. The volatile materials were removed under reduced pressure and the brown residue suspended in 40 mL n-pentane and subjected to suction filtration through a pad of Celite. The volatile materials were removed under reduced pressure from the resulting filtrate, and the brown-red solids $(770 \mathrm{mg}, 0.50 \mathrm{mmol}, 94 \%)$ were collected and identified as spectroscopically pure $\operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$. The material can be crystallized from a saturated $n$-pentane solution, at $-35^{\circ} \mathrm{C}$. Elemental analysis (\%) found (calculated) for $\mathrm{C}_{72} \mathrm{H}_{102} \mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Sn}: \mathrm{C} 55.20(55.65)$, H 6.37(6.62). ${ }^{1} \mathrm{H}$ NMR (benzene- $\left.d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}\right) \delta: 7.11\left(12 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=\right.$ $7.53 \mathrm{~Hz}), 7.00\left(6 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 3.75\left(12 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.28\left(72 \mathrm{H}, \mathrm{d},{ }^{3} J=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 75.4 \mathrm{MHz}$ ) $\delta: 159.98,138.55,123.95,27.51,24.69 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}$, 161.9 MHz) $\delta:-226\left(\mathrm{~s}, \Delta v_{1 / 2}=9 \mathrm{~Hz}\right) \mathrm{ppm}$. No ${ }^{119} \mathrm{Sn}$ NMR signal was detected during an 15 h acquisition over the


Figure S.1: ${ }^{1} \mathrm{H}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}$ ) spectrum of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$.
spectral range of +300 to -1500 ppm .

## S.1.3 (THF) $\operatorname{Sn}\left[\mathrm{P}_{3} \mathbf{N b}(\text { ODipp })_{3}\right]_{2}\left((\mathrm{THF}) \operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}\right)$

To a solution of $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[1-\mathrm{P}_{3}\right]\left(450 \mathrm{mg}, 0.470 \mathrm{mmol}, 2\right.$ equiv) in THF $(2 \mathrm{~mL})$ was added a solution of $\mathrm{SnCl}_{2}$ (44.5 $\mathrm{mg}, 0.235 \mathrm{mmol}, 1$ equiv) in THF ( 15 mL ) causing the reaction mixture to turn dark red. After 1 h of stirring the volatile materials were removed under reduced pressure, and the solid residue was triturated with $n$-hexane ( $2 \times 5 \mathrm{~mL}$ ), slurried in $n$-pentane ( 15 mL ) and the resulting mixture subjected to filtration through a Celite pad. The resulting filtrate was brought to constant mass ( $360 \mathrm{mg}, 0.221 \mathrm{mmol}, 94 \%$ ) yielding a dark red solid identified as spectroscopically clean (THF)Sn[1$\left.\mathrm{P}_{3}\right]_{2}$. Elemental analysis for crystals of (THF) $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ (\%) found (calculated) for $\mathrm{C}_{76} \mathrm{H}_{110} \mathrm{Nb}_{2} \mathrm{O}_{7} \mathrm{P}_{6} \mathrm{Sn}$ : $\mathrm{C} 55.53(56.14)$, H 6.41(6.82). ${ }^{1} \mathrm{H}$ NMR (benzene- $\left.d_{6}, 2{ }^{\circ} \mathrm{C}, 300 \mathrm{MHz}\right) \boldsymbol{\delta}: 7.13\left(12 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 7.00\left(6 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=6.8,8.3\right.$ $\mathrm{Hz}), 3.79\left(12 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 3.39(4-6 \mathrm{H}, \mathrm{m}, \mathrm{THF}), 1.35(4-6 \mathrm{H}, \mathrm{m}, \mathrm{THF}), 1.31\left(72 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20{ }^{\circ} \mathrm{C}, 100.6 \mathrm{MHz}$ ) $\delta: 160.70,138.54,123.80,123.45,68.05,27.46,25.66,24.45 \mathrm{ppm}$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20{ }^{\circ} \mathrm{C}, 202.4 \mathrm{MHz}$ ) $\delta:-219\left(\mathrm{bs}, \Delta v_{1 / 2}=185 \mathrm{~Hz}\right.$ ) ppm. No ${ }^{119} \mathrm{Sn}$ NMR signal was detected during an 3 h acquisition over the spectral range of +300 to -1500 ppm .


Figure S.2: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 202.4 \mathrm{MHz}$ ) spectrum of (THF) $\mathrm{Sn}\left[\mathbf{1}-\mathrm{P}_{3}\right]_{2}$.

## S.1.4 $\quad(\mathbf{T H F})_{2} \mathbf{P b}\left[\mathbf{P}_{3} \mathbf{N b}(\mathbf{O D i p p})_{3}\right]_{2}\left((\mathbf{T H F})_{2} \mathbf{P b}\left[1-\mathbf{P}_{3}\right]_{2}\right)$

To a solution of $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[\mathbf{1}-\mathrm{P}_{3}\right]\left(450 \mathrm{mg}, 0.470 \mathrm{mmol}, 2\right.$ equiv) in THF $(2 \mathrm{~mL})$ was added a solution of $\mathrm{PbCl}_{2}$ (65 $\mathrm{mg}, 0.235 \mathrm{mmol}, 1$ equiv $)$ in THF ( 15 mL ) causing the reaction mixture to turn maroon. After 1 h of stirring the volatile materials were removed under reduced pressure, slurried in $n$-pentane ( 15 mL ) and the resulting mixture subjected to filtration trough a Celite pad, under reduced pressure. The filtrate was brought to constant mass ( $405 \mathrm{mg}, 0.227 \mathrm{mmol}$, $96 \%$ yield) yielding a maroon solid identified as spectroscopically clean (THF) $)_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$. Elemental analysis (\%) found (calculated) for crystals of (THF) ${ }_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2} \mathrm{C}_{80} \mathrm{H}_{118} \mathrm{Nb}_{2} \mathrm{O}_{8} \mathrm{P}_{6} \mathrm{P}: \mathrm{C} 54.09$ (53.78), H 6.57(6.66), P 10.40(11.62); powdered $(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$ did not pass elemental analysis. ${ }^{1} \mathrm{H}$ NMR (benzene $\left.-d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}\right) \delta: 7.14\left(12 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.6\right.$ $\mathrm{Hz}), 7.00\left(6 \mathrm{H}, \mathrm{dd},{ }^{3} J=6.9,8.2 \mathrm{~Hz}\right), 3.81\left(12 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 3.43(7-8 \mathrm{H}, \mathrm{m}, \mathrm{THF}), 1.36(\mathrm{~m}, \mathrm{THF}), 1.33(72 \mathrm{H}$, d, ${ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}$ ) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 2{ }^{\circ} \mathrm{C}, 100.6 \mathrm{MHz}$ ) $\delta: 160.79,138.53,123.79,123.32,68.03$, 27.51, 25.70, $24.48 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 202.4 \mathrm{MHz}$ ) $\delta:-212\left(\mathrm{bs}, \Delta v_{1 / 2}=180 \mathrm{~Hz}\right.$ ) ppm.

## S.1.5 $\quad\left[\mathrm{AgP}_{3} \mathbf{N b}(\mathbf{O D i p p})_{3}\right]_{4}\left(\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}\right)$

A solution of $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[1-\mathrm{P}_{3}\right](0.500 \mathrm{~g}, 0.523 \mathrm{mmol}, 1$ equiv $)$ in THF $(15 \mathrm{~mL})$ and AgOTf $(0.134 \mathrm{~g}, 0.523 \mathrm{mmol}, 1$ equiv) in THF ( 15 mL ) were prepared separately and cooled to $-35^{\circ} \mathrm{C}$. Then, the AgOTf solution was added dropwise to the stirring solution of $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[1-\mathrm{P}_{3}\right]$. The resulting mixture was stirred at room temperature for 1.5 h . The volatile


Figure S.3: ${ }^{1} \mathrm{H}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}$ ) spectrum of $(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$.
$\stackrel{\otimes}{\underset{i}{+}}$


Figure S.4: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20{ }^{\circ} \mathrm{C}, 202.4 \mathrm{MHz}$ ) spectrum of $(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$.


Figure S.5: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene $-d_{6}, 20{ }^{\circ} \mathrm{C}, 161.9 \mathrm{MHz}$ ) spectrum of $\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}$.
materials were removed under reduced pressure, and and the residue was triturated twice with $n$-hexane ( $2 \times 2 \mathrm{~mL}$ ). The resulting solids were slurried in a mixture of $n$-pentane (ca. 75 mL ) and diethyl ether (ca. 50 mL ), and the slurry was subjected to filtration through a pad of Celite. The volatile materials were removed under reduced pressure from the collected brick-red filtrate. The resulting solids were dissolved in THF (ca. 5 mL ) and $n$-pentane ( 10 mL ) was added; the solution was set at $-35^{\circ} \mathrm{C}$ overnight. Spectroscopically clean $\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}$ was collected upon suction filtration as a brick-red powder ( $358 \mathrm{mg}, 0.434 \mathrm{mmol}, 83 \%$ ). Elemental analysis (\%) found (calculated) for $\mathrm{C}_{36} \mathrm{H}_{51} \mathrm{AgNbO}_{3} \mathrm{P}_{3}$ : C 52.34(52.38), H 6.05(6.23), P 11.52(11.26). ${ }^{1} \mathrm{H}$ NMR (benzene- $\left.d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}\right) \delta: 7.09\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5\right.$ $\mathrm{Hz}), 6.93\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=7.4,7.7 \mathrm{~Hz}\right), 3.70\left(6 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.28\left(36 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 75.4 \mathrm{MHz}$ ) $\delta: 159.98,138.55,123.95,27.51,24.69 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}$, 161.9 MHz ) $\delta:-243$ (quintet, $J_{107 / 109 \mathrm{Ag}-\mathrm{P}}=37 \mathrm{~Hz}$ ) ppm. The diffusion coefficient of $\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}$ in benzene- $d_{6}$ was determined to be $3.5 \times 10^{-10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. Diffusion Ordered NMR is based on the ratio of the diffusion coefficients of two molecules in the same solvent being proportional to the cube root of the inverse ratio of their molecular weights. ${ }^{3}$ Using this relationship and the molecular weight of $2-\mathrm{P}_{3}$ of $698.55 \mathrm{~g} / \mathrm{mol}$, the calculated value of the molecular weight of the silver complex in solution is $3519.3 \mathrm{~g} / \mathrm{mol}$. This number is close to the expected value of $3301.9 \mathrm{~g} / \mathrm{mol}$ for the tetramer $\left\{[\mathrm{Ag}]\left[1-\mathrm{P}_{3}\right]\right\}_{4}$.

## S.1.6 $\quad \mathbf{P}_{3} \mathbf{N b}(\text { ODipp })_{2}(\mathbf{p y})_{2}\left(\mathbf{2}-\mathrm{P}_{3}\right)$

A 30 mL Schlenk flask equipped with a Teflon stopper and a magnetic stir bar was charged with solid $\left[\mathrm{Na}(\mathrm{THF})_{3}\right][\mathbf{1}-$ $\mathrm{P}_{3}$ ( $120 \mathrm{mg}, 0.126 \mathrm{mmol}, 1$ equiv), $\mathrm{MgCl}_{2}(6 \mathrm{mg}, 0.064 \mathrm{mmol}, 0.51$ equiv), THF ( 5 mL ) and pyridine ( 0.5 mL ). The sealed reaction flask was placed in a pre-heated oil bath at $70^{\circ} \mathrm{C}$ for 3 h , during which time the reaction mixture turned from the initial orange color to bright green. Next, the volatile materials were removed under reduced pressure and the residue was triturated twice with $n$-hexane $(2 \times 2 \mathrm{~mL})$. The resulting green solids were slurried in additional $n$ hexane (ca. 7 mL ) for ca. 30 min , before the slurry was subjected to suction filtration under reduced pressure. The green solids collected on the sintered frit were then washed with $n$-hexane (ca. 3 mL ). The green filter cake was then dissolved in benzene, the obtained slurry was subjected to filtration, and the green filtrate was brought to constant mass and identified as spectroscopically clean $2-\mathrm{P}_{3}(84 \mathrm{mg}, 0.120 \mathrm{mmol}, 95 \%$ yield). Elemental analysis (\%) found (calculated) for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NbO}_{2} \mathrm{P}_{3}$ : C $58.31(58.46), \mathrm{H} 6.29(6.35) .{ }^{1} \mathrm{H}$ NMR (benzene- $\left.d_{6}, 20^{\circ} \mathrm{C}, 300 \mathrm{MHz}\right) \delta: 8.94(4 \mathrm{H}, \mathrm{d}, J=5.0$ $\mathrm{Hz}), 7.24\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 7.08\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 6.56(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 6.21(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz})$, $3.78\left(4 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.21\left(24 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 125.8 \mathrm{MHz}$ ) $\delta: 158.85,151.36,137.99,137.67,124.12,124.03,121.81,26.92,24.79 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20{ }^{\circ} \mathrm{C}, 161.9$ $\mathrm{MHz}) \delta$ : $-78(\mathrm{~s}) \mathrm{ppm}$. The diffusion coefficient of 2-P $\mathrm{P}_{3}$ in benzene $-d_{6}$ was determined to be $6.0 \times 10^{-10} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$.

## S.1.7 Generation of $\left[\mathrm{KP}_{3} \mathrm{Nb}(\text { ODipp })_{3}\right]_{2}$ from $2-\mathrm{P}_{3}$ and KODipp

To a solution of 2- $\mathrm{P}_{3}(0.200 \mathrm{~g}, 0.286 \mathrm{mmol}, 1$ equiv) in THF (ca. 5 mL ) was added KODipp ( $0.062 \mathrm{~g}, 0.286 \mathrm{mmol}, 1$ equiv) as a solution in THF (ca. 10 mL ). Upon mixing the two reagents the reaction mixture turned dark orange. After ca. 30 min stirring at room temperature the volatile materials were removed under reduced pressure. The oily residue was triturated with $n$-hexane $(2 \times 5 \mathrm{~mL})$, and then all volatile materials were removed under reduced pressure. The resulting brown-red solids were dissolved in THF ( 5 mL ) and the resulting mixture was subjected to filtration. All volatile materials were removed from the orange filtrate, and the residue was slurried in HMDSO (hexamethyldisiloxane, 5 mL ), and placed in a refrigerator at a temperature of $-35^{\circ} \mathrm{C}$. A bright orange precipitate was collected on a sintered frit by suction filtration ( $130 \mathrm{mg}, 0.172 \mathrm{mmol}$, ca $60 \%$ ) containing ca $5 \%$ free HODipp, as measured by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Further purification efforts, including crystallization attempts and reprecipitation from HMDSO were unsuccessful. Satisfactory combustion elemental analysis was not obtained for this compound. ${ }^{1} \mathrm{H}$ NMR (benzene- $d_{6}, 2{ }^{\circ} \mathrm{C}, 300 \mathrm{MHz}$ ) $\delta: 7.13$ $\left(6 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}\right), 6.92\left(3 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}=7.4,7.7 \mathrm{~Hz}\right), 3.92\left(6 \mathrm{H}\right.$, sept, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.37\left(36 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7\right.$ Hz ) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20{ }^{\circ} \mathrm{C}, 75.4 \mathrm{MHz}$ ) $\delta$ : 161.45, 139.09, 123.43, 121.90, 27.32, $24.38 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $\left.d_{6}, 20^{\circ} \mathrm{C}, 121.5 \mathrm{MHz}\right) \delta:-195(\mathrm{~s}) \mathrm{ppm}$. The diffusion coefficient of $\left\{[\mathrm{K}]\left[1-\mathrm{P}_{3}\right]\right\}_{2}$ in benzene- $d_{6}$ was determined to be $4.3 \times 10^{-10} \mathrm{~m}^{-2} \mathrm{~s}^{-1} .4$


Figure S.6: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (benzene- $d_{6}, 20^{\circ} \mathrm{C}, 161.9 \mathrm{MHz}$ ) spectrum of the reaction mixture resulted in the reaction of 2- $\mathrm{P}_{3}$ with $\mathrm{AsCl}_{3}$, after addition of $\mathrm{PPh}_{3}$ as an internal standard.

## S.1.8 Synthesis of $\mathbf{A s P}_{3}$ from 2- $\mathbf{P}_{3}$ and $\mathbf{A s C l}_{3}$

To a thawing solution of $2-\mathrm{P}_{3}(0.050 \mathrm{~g}, 0.072 \mathrm{mmol}, 1$ equiv $)$ in toluene $(5 \mathrm{~mL})$ was added dropwise a thawing solution of $\mathrm{AsCl}_{3}(0.013 \mathrm{~g}, .072 \mathrm{mmol}, 1$ equiv) in toluene ( 1 mL ). Upon warming to room temperature the reaction mixture turned changed color from dark green to bright orange. After approx. 20 min of stirring at room temperature, the reaction mixture was subjected to filtration to remove dark red solids that formed during the reaction. To the bright orange filtrate was added $\mathrm{PPh}_{3}(13 \mathrm{mg}, 0.049 \mathrm{mmol}$ ) as an internal standard, and an aliquot of the resulting solution was analyzed by ${ }^{31} \mathrm{P}$ NMR to reveal that $\mathrm{AsP}_{3}$ was produced in $45 \%$ spectroscopic yield ( ${ }^{31} \mathrm{P}$ NMR $\delta:-486 \mathrm{ppm}$ ). ${ }^{1}$

## S.1.9 Solid state structure of $\left[1-P_{3}(p y)\right]_{2}$

X-ray quality crystals of $2-\mathrm{P}_{3}$ as well as of the $\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}(\mathrm{py})\right]_{2}$ dimer (Fig.S.7) were obtained serendipitously from a mixture of the previously reported cyclo- $\mathrm{P}_{4}$ dimer $\left[\mathrm{P}_{2} \mathrm{Nb}(\mathrm{ODipp})_{3}\right]_{2}{ }^{5}$ and pyridine which was exposed to air. The solid state structure of $\left[1-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$ reveals a long P-P interaction connecting the two $\mathrm{NbP}_{3}$ units of 2.238 (1) $\AA$. Each niobium center has a molecule of pyridine coordinated to it and interacts with only two P atoms of the cyclo- $\mathrm{P}_{3}$ unit.

We have unsuccessfully explored several routes to independently and reproducibly synthesize $\left[1-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$ including chemical oxidation of $\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[1-\mathrm{P}_{3}\right]$, direct synthesis from $\mathrm{Cl}_{2} \mathrm{Nb}(\mathrm{ODipp})_{3}$ and $\mathrm{P}_{4}$ under reducing conditions (analogous to preparation of $\left.\left[\mathrm{Na}(\mathrm{THF})_{3}\right]\left[\mathbf{1}-\mathrm{P}_{3}\right]\right)$, and photolysis of $(\mathrm{THF})_{2} \mathrm{~Pb}\left[\mathbf{1}-\mathrm{P}_{3}\right]_{2}$ or $\left\{[\mathrm{Ag}]\left[\mathbf{1}-\mathrm{P}_{3}\right]\right\}_{4}$. The only other reported complex
with a bridging $\left[\mathrm{P}_{6}\right]^{4-}$ ligand is $\left[\mathrm{P}_{3} \mathrm{Nb}\left(\mathrm{OSi}^{t} \mathrm{Bu}\right)_{3}\right]_{2}{ }^{6}$


Figure S.7: Solid-state molecular structure of $\left[1-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$ with ellipsoids at the $50 \%$ probability level and rendered using PLATON. ${ }^{7}$ Hydrogen atoms and the co-crystallized solvent (benzene) were omitted for clarity. Selected interatomic distances ( $\AA$ ) and angles $\left({ }^{\circ}\right)$ : $\mathrm{P}(2) \mathrm{a}-\mathrm{P}(2) 2.2380(10), \mathrm{P}(2)-\mathrm{P}(1) 2.2089(10), \mathrm{P}(1)-\mathrm{P}(3) 2.1727(11), \mathrm{P}(3)-\mathrm{P}(2) 2.2036(10)$, $\mathrm{Nb}(1)-\mathrm{P}(1)$ 2.5653(9), $\mathrm{Nb}(1)-\mathrm{P}(3)$ 2.5252(8), $\mathrm{P}(3) \mathrm{a}-\mathrm{P}(1) \mathrm{a} 2.1727(11), \mathrm{P}(1) \mathrm{a}-\mathrm{P}(2) \mathrm{a} 2.2089(10), \mathrm{P}(2) \mathrm{a}-\mathrm{P}(3) \mathrm{a} 2.2036(10)$, $\mathrm{Nb}(1) \mathrm{a}-\mathrm{P}(3) \mathrm{a} 2.5252(8), \mathrm{Nb}(1) \mathrm{a}-\mathrm{P}(1) \mathrm{a} 2.5653(9), \mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(2) \mathrm{a} 97.21(4), \mathrm{P}(3)-\mathrm{P}(2)-\mathrm{P}(2) \mathrm{a} 95.50(4), \mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(3)$ $59.00(3), \mathrm{P}(2)-\mathrm{P}(1)-\mathrm{P}(3)-\mathrm{Nb}(1) 98.33$ (3).

## S.1.10 Treatment of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$ with pyridine- $N$-oxide

To a solution of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$ ( $400 \mathrm{mg}, 0.245 \mathrm{mmol}, 1$ equiv) in THF ( 20 mL ) at room temperature was added a solution of pyridine- $N$-oxide ( $46.8 \mathrm{mg}, 0.490 \mathrm{mmol}, 2$ equiv) in THF ( 20 mL ). The reaction mixture was then stirred ca. 6 h , at which point $\mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} .20 \mathrm{~mL}$ ) was added to aid the precipitation of the fine black solids produced during the reaction. The reaction mixture was then subjected to filtration, and a solid metallic-black material was collected on a sintered frit ( 127 mg ), while the yellow filtrate was brought to constant mass ( 294 mg ). Pale yellow crystals of O[1(Py)] were obtained by cooling a THF/pentane solution of the yellow residue to $-35^{\circ} \mathrm{C}$, over 2 crops ( $243 \mathrm{mg}, 0.338 \mathrm{mmol}$, 69\%). Elemental analysis (\%) found (calculated) for $\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{NNbO}_{4}$ : C 68.52(68.41), H 7.72(7.84). Elemental analysis of the black material (combustion and ICP; \%) found for batch 1: C 26.77 , H 3.19, N 0.73 , P 35.69; batch 2: C 15.97, H 1.39, N 1.30, Sn 29.21; batch 3: C 17.38, H 2.06, N 1.27, P 40.13. Further characterization of this material is described below, in the section S.2.

## S. 2 Characterization of the black material formed in the reaction of (THF)Sn[1-P $\left.]_{3}\right]_{2}$ with Py-O

Powder Diffraction experiments were conducted at the MIT Center for Materials Science and Engineering (CMSE) Xray facility using a Panalytical X'Pert Pro diffractometer with a Bragg-Brentano geometry and High Speed X'Celerator


Figure S.8: The black precipitate obtained in the reaction of (THF) $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ with Py-O right after isolation (a) and after 2 h (b), 3 days (c) and 5 days (d) of exposure to air.


Figure S.9: Plot of heat flow (W/s) against temperature ( ${ }^{\circ} \mathrm{C}$ ) for the black precipitate $(9.4100 \mathrm{mg})$ obtained in the reaction of (THF) $\operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ with Py-O using an Universal V4.5A TA instrument.

Detector. All PXRD data was analyzed using X'pert HighScore Plus Program (Fig. S.10). ${ }^{8}$ Energy-dispersive X-ray (EDX) spectroscopy was performed at the MIT Center for Materials Science and Engineering (CMSE), by using a JEOL JSM-5910 scanning electron microscope (Fig. S.11). Differential scanning calorimetry analysis was performed in the Materials Research Science and Engineering Center at Harvard University using a TA Q200 Instrument. The sample was heated in an aluminum pan (DSC) under a nitrogen flow with a heating ramp of $10^{\circ} \mathrm{C} / \mathrm{min}$ up to $360{ }^{\circ} \mathrm{C}$ (Fig. S.9). ${ }^{31} \mathrm{P}$ CP-MAS NMR spectra were referenced externally to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0 \mathrm{ppm})$ (Fig. S.13).


Figure S.10: Powder Diffraction spectrum of the black precipitate as produced from the reaction of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$ with Py-O (top), after 3 days of heating inside a sublimator under static vacuum at $290^{\circ} \mathrm{C}$ with formation of $\mathrm{Sn}_{4} \mathrm{P}_{3}$ (middle), after 3 days of heating inside a sublimator under static vacuum at $250^{\circ} \mathrm{C}$ with formation of SnP (bottom).


Figure S.11: Elemental mapping of the black precipitate produced in the reaction of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$ with Py-O by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) showing a ratio of $\mathrm{Sn}: \mathrm{P}$ of 1:5.4 and a homogeneous distribution of the two elements throughout the sample.



Figure S.12: ${ }^{31} \mathrm{P}$ CP-MAS NMR spectra of the black precipitate as produced in the reaction of (THF)Sn[1- $\left.\mathrm{P}_{3}\right]_{2}$ with Py-O (top), and after heating under dynamic vacuum from 170 to $280^{\circ} \mathrm{C}$ for 3 h , obtained using a 202.4 MHz magnet and recorded at a spinning frequency of 8 kHz at $22^{\circ} \mathrm{C}$.



Figure S.13: ${ }^{31} \mathrm{P}$ CP-MAS NMR spectrum of red phosphorus purchased from Aldrich, using a 202.4 MHz magnet and recorded at a spinning frequency of 8 kHz at $22^{\circ} \mathrm{C}$.

## S. 3 X-ray Diffraction Studies

Diffraction-quality, dark red crystals of (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}, \mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2},(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$ and $\mathrm{O}[\mathbf{1}(\mathrm{Py})]$ were grown at -35 ${ }^{\circ} \mathrm{C}$ by vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ in a saturated solution of (THF) $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ in toluene, from a saturated $n$-pentane solution of $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$, from a saturated $n$-pentane solution of $(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2}$ and from a saturated solution of $\mathrm{O}[\mathbf{1}(\mathrm{Py})]$ in a THF $/ n$-pentane mixture, respectively. Diffraction-quality green crystals of $2-\mathrm{P}_{3}$ and $\left[1-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$ were serendipitously grown from benzene, at room temperature. The crystals were mounted in hydrocarbon oil on a nylon loop or a glass fiber. Low-temperature ( 100 K ) data were collected on a a Bruker D8 three-circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphite-monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation ( $\lambda=1.54178 \AA$ ) or on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart Apex 2 CCD detector with Mo K $\alpha$ radiation ( $\lambda=0.71073 \AA$ ) with $\phi$ - and $\omega$-scans. A semi-empirical absorption correction was applied to the diffraction data using SADABS. ${ }^{9}$ All structures were solved by direct or Patterson methods using SHELXS ${ }^{10,11}$ and refined against $F^{2}$ on all data by full-matrix least squares with SHELXL-97. ${ }^{11,12}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the $U_{e q}$ value of the atoms they are linked to ( 1.5 times for methyl groups). ${ }^{13}$ Descriptions of the individual refinements follow below and details of the data quality and a summary of the residual values of the refinements for all structures are given in the following tables. Further details are provided in the form of .cif files available from the CCDC. ${ }^{14}$

The tin phosphide (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2}$ crystallized in the orthorhombic space group Pca2(1) with two molecules per asymmetric unit and two $\mathrm{Et}_{2} \mathrm{O}$ molecules. One of twenty four isopropyl groups of the Dipp unit is disordered over two positions. The tin phosphide $\operatorname{Sn}\left[1-\mathrm{P}_{3}\right]_{2}$ crystallized in the monoclinic space group $P 2(1) / c$ with one molecule per asymmetric unit and a molecule of benzene, which is disordered with a toluene molecule. Two of twelve isopropyl groups of the Dipp unit are disordered over two positions. The lead phosphide complex (THF) ${ }_{2} \mathrm{~Pb}\left[\mathbf{1}-\mathrm{P}_{3}\right]_{2}$ crystallized in the monoclinic space group $C 2 / c$ with one molecule per asymmetric unit, containing the Pb atom in a plane of symmetry relating the two Nb centers as well as two molecules of benzene, one of which is disordered with a molecule of $n$-pentane. The other benzene molecule is disordered over two positions. The two THF molecules coordinated to the lead atom are disordered over two positions. 2- $\mathrm{P}_{3}$ crystallized in in the monoclinic space group $P 21 / n$ with one molecule per asymmetric unit and 1.5 benzene molecules, the benzene with half occupancy being disordered over the inversion center. $\mathrm{O}[\mathbf{1}(\mathrm{Py})]$ crystallized in the orthorhombic space group Pna2(1) with one molecule per asymmetric unit and one THF molecule. This molecule has no disorders. Dimer $\left[\mathrm{P}_{3} \mathrm{Nb}(\mathrm{ODipp})_{3}(\mathrm{py})\right]_{2}$ crystallized in the triclinic space group $P \overline{1}$ with one molecule per asymmetric unit and a benzene molecule disordered over two positions. Further details are provided in Tables 1 and 2.


Figure S.14: Solid-state molecular structure of O[1(Py)] with ellipsoids at the $50 \%$ probability level and rendered using PLATON. ${ }^{7}$ Hydrogen atoms and the co-crystallized solvent (THF) were omitted for clarity. Selected interatomic distances ( $\AA$ ) and angles $\left({ }^{\circ}\right): \mathrm{O} 1-\mathrm{Nb} 11.707(2), \mathrm{Nb} 1-\mathrm{N} 12.336(3)$, $\mathrm{O} 3-\mathrm{Nb} 1-\mathrm{O} 1112.1(1), \mathrm{O} 3-\mathrm{Nb} 1-\mathrm{O} 4$ 93.53(9).
Table 1: Crystallographic Data for $\mathrm{Sn}\left[\mathbf{1}-\mathrm{P}_{3}\right]_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, (THF)Sn[1-P $\left.\mathrm{P}_{3}\right]_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ and (THF) ${ }_{2} \mathrm{~Pb}\left[\mathbf{1}-\mathrm{P}_{3}\right]_{2} \cdot 2.6 \mathrm{C}_{6} \mathrm{H}_{6}$

|  | $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ | (THF) $\mathrm{Sn}\left[1-\mathrm{P}_{3}\right]_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ | $(\mathrm{THF})_{2} \mathrm{~Pb}\left[1-\mathrm{P}_{3}\right]_{2} \cdot 2.6 \mathrm{C}_{6} \mathrm{H}_{6}$ |
| :---: | :---: | :---: | :---: |
| CCDC code | 1421301 | 1421302 | 1421303 |
| Empirical formula, FW (g/mol) | $\mathrm{C}_{78.24} \mathrm{H}_{108.49} \mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Sn}, 1635.35$ | $\mathrm{C}_{80} \mathrm{H}_{120} \mathrm{Nb}_{2} \mathrm{O}_{8} \mathrm{P}_{6} \mathrm{Sn}, 1700.09$ | $\mathrm{C}_{97.60} \mathrm{H}_{138.40} \mathrm{Nb}_{2} \mathrm{O}_{8} \mathrm{P}_{6} \mathrm{Sn}, 2018.52$ |
| Color / Morphology | Red / Block | Orange / Shard | Red / Hexagonal Plate |
| Crystal size ( $\mathrm{mm}^{3}$ ) | $0.02 \times 0.13 \times 0.14$ | $0.10 \times 0.13 \times 0.25$ | $0.05 \times 0.30 \times 0.40$ |
| Temperature (K) | 100(2) | 100(2) | 100(2) |
| Wavelength ( A ) | 0.71073 | 0.71073 | 0.71073 |
| Crystal system, Space group | Monoclinic, P2(1)/c | Orthorhombic, Pca2(1) | Monoclinic, $C 2 / c$ |
| Unit cell dimensions ( $\mathrm{A},{ }^{\circ}$ ) | $a=19.234(2), \alpha=90$ | $a=27.951$ (3), $\alpha=90$ | $a=23.997(1), \alpha=90$ |
|  | $b=20.735(2), \beta=92.989(2)$ | $b=25.525(3), \beta=90$ | $b=12.5011(7), \beta=102.473(1)$ |
|  | $c=20.601(2), \gamma=90$ | $c=24.007(3), \gamma=90$ | $c=33.949(2), \gamma=90$ |
| Volume ( $\AA^{3}$ ) | 8205(2) | 17127(3) | 9944(1) |
| Z | 4 | 8 | 4 |
| Density (calc., g/cm ${ }^{3}$ ) | 1.324 | 1.319 | 1.348 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 0.741 | 0.714 | 2.063 |
| $F(000)$ | 3392 | 7088 | 4168 |
| Theta range for data collection ( ${ }^{\circ}$ ) | 1.39 to 30.61 | 0.80 to 28.28 | 1.74 to 29.57 |
| Index ranges | $\begin{aligned} & -27 \leq h \leq 27,-29 \leq k \leq 29, \\ & -28 \leq l \leq 29 \end{aligned}$ | $\begin{aligned} & -37 \leq h \leq 37,-34 \leq k \leq 34, \\ & -31 \leq l \leq 31 \end{aligned}$ | $\begin{aligned} & -33 \leq h \leq 33,-17 \leq k \leq 17, \\ & -47 \leq l \leq 47 \end{aligned}$ |
| Reflections collected | 193614 | 348710 | 109407 |
| Independent reflections, $R_{\text {int }}$ | 18222 (0.0364) | 32792 (0.0469) | 12695 (0.0271) |
| Completeness to $\theta_{\text {max }}$ (\%) | 99.4 | 195/1.00 | 100.1 |
| Absorption correction | Multi-scan (SADABS) | Multi-scan (SADABS) | Multi-scan (SADABS) |
| Max. and min. transmission | 0.901 and 0.985 | 0.8417 and 0.9320 | 0.481 and 0.902 |
| Refinement method | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 25131 / 162 / 888 | 42449 / 107 / 1829 | 13959 / 485 / 668 |
| Goodness-of-fit ${ }^{a}$ | 1.028 | 1.023 | 1.111 |
| Final $R$ indices ${ }^{b}[I>2 \sigma(I)]$ | $R_{1}=0.0364, w R_{2}=0.0692$ | $R_{1}=0.0469, w R_{2}=0.0842$ | $R_{1}=0.0271, w R_{2}=0.0569$ |
| $R$ indices $^{b}$ (all data) | $R_{1}=0.0656, w R_{2}=0.0796$ | $R_{1}=0.0765, w R_{2}=0.0975$ | $R_{1}=0.0321, w R_{2}=0.0585$ |
| Largest diff. peak and hole ( $e \cdot \AA^{-3}$ ) | 1.014 and -0.540 | 0.967 and -0.489 | 1.089 and -1.295 |

[^1]Table 2: Crystallographic Data for 2- $\mathrm{P}_{3}, \mathrm{O}[\mathbf{1}(\mathrm{Py})]$ and $\left[\mathbf{1}-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$

|  | 2-P3 | O [1(Py)].THF | $\left[1-\mathrm{P}_{3}(\mathrm{Py})\right]_{2}$ |
| :---: | :---: | :---: | :---: |
| CCDC code | 1421300 | 1421299 | 1421298 |
| Empirical formula, FW (g/mol) | $\mathrm{C}_{43} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{NbO}_{2} \mathrm{P}_{3}, 815.69$ | $\mathrm{C}_{45} \mathrm{H}_{64} \mathrm{NNbO}_{5}, 791.88$ | $\mathrm{C}_{88} \mathrm{H}_{124} \mathrm{~N}_{2} \mathrm{Nb}_{2} \mathrm{O}_{6} \mathrm{P}_{6}, 1677.53$ |
| Crystal size ( $\mathrm{mm}^{3}$ ) | $0.20 \times 0.20 \times 0.10$ | $0.55 \times 0.11 \times 0.10$ | $0.14 \times 0.08 \times 0.04$ |
| Temperature (K) | 100(2) | 100(2) | 100(2) |
| Wavelength ( $\AA$ ) | 1.54178 | 0.71073 | 0.71073 |
| Crystal system, Space group | Monoclinic, P21/n | Orthorhombic, Pna2(1) | Triclinic, P-1 |
| Unit cell dimensions ( $\AA$, ${ }^{\circ}$ ) | $a=14.010(1), \alpha=90$ | $a=18.403(2), \alpha=90$ | $a=10.4029(7), \alpha=94.929(1)$ |
|  | $b=16.529(1), \beta=92.662(4)$ | $b=23.170(2), \beta=90$ | $b=13.729(1), \beta=93.683(1)$ |
|  | $c=18.096$ (1), $\gamma=90$ | $c=10.0258(9), \gamma=90$ | $c=16.343(1), \gamma=95.884(1)$ |
| Volume ( ${ }^{\circ}{ }^{3}$ ) | 4186.0(5) | 4275.0(7) | 2307.1(3) |
| Z | 4 | 4 | 1 |
| Density (calc., $\mathrm{g} / \mathrm{cm}^{3}$ ) | 1.294 | 1.230 | 1.207 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 3.707 | 0.325 | 0.401 |
| $F(000)$ | 1708 | 1688 | 886 |
| Theta range for data collection ( ${ }^{\circ}$ ) | 3.623 to 70.215 | 1.41 to 27.10 | 1.86 to 28.28 |
| Index ranges | $-17 \leq h \leq 16,-20 \leq k \leq 20$ | $-23 \leq h \leq 23,-29 \leq k \leq 29$ | $-13 \leq h \leq 13,-18 \leq k \leq 18$ |
| Reflections collected | $87281$ | $\begin{aligned} & -12 \leq l \leq 12 \\ & 67735 \end{aligned}$ | $\begin{aligned} & -21 \leq l \leq 21 \\ & 57444 \end{aligned}$ |
| Independent reflections | 7782 | 9407 | 11436 |
| Completeness to $\theta_{\text {max }}$ (\%) | 97.6 | 189/1.0 | 99.9 |
| Absorption correction | Multi-scan (SADABS) | Multi-scan (SADABS) | Multi-scan (SADABS) |
| Max. and min. transmission | 0.5870 and 0.7533 | 0.958 and 0.968 | 0.9460 and 0.9842 |
| Refinement method | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 7782 / 276 / 495 | 940 / 1/481 | 11436 / 156 / 563 |
| Goodness-of-fit ${ }^{\text {a }}$ | 1.022 | 1.014 | 1.014 |
| Final $R$ indices ${ }^{b}$ [ $\left.I>2 \sigma(I)\right]$ | $R_{1}=0.0388, w R_{2}=0.0923$ | $R_{1}=0.0395, w R_{2}=0.0801$ | $R_{1}=0.0459, w R_{2}=0.0832$ |
| $R$ indices $^{b}$ (all data) | $R_{1}=0.0554, w R_{2}=0.1013$ | $R_{1}=0.0614, w R_{2}=0.0901$ | $R_{1}=0.0835, w R_{2}=0.0985$ |
| Largest diff. peak and hole ( $e \cdot \AA^{-3}$ ) | 0.351 and -0.559 | 0.488 and -0.362 | 0.879 and -0.741 |

[^2]
## References

[1] Cossairt, B. M.; Diawara, M.-C.; Cummins, C. C. Science 2009, 323, 602-602.
[2] Boyle, T. J.; Andrews, N. L.; Rodriguez, M. A.; Campana, C.; Yiu, T. Inorg. Chem. 2003, 42, 5357-5366.
[3] Waldeck, A.; Kuchel, P. W.; Lennon, A. J.; Chapman, B. E. Prog. Nucl. Magn. Reson. Spectrosc. 1997, 30, $39-68$.
[4] Diffusion Ordered NMR is based on the ratio of the diffusion coefficients of two molecules in the same solvent being proportional to the cube root of the inverse ratio of their molecular weights. Using this relationship and the molecular weight of $2-\mathrm{P}_{3}$ of $698.55 \mathrm{~g} / \mathrm{mol}$, the calculated value of the molecular weight of the silver complex in solution is $3519.3 \mathrm{~g} / \mathrm{mol}$. This value is very close to the expected value of $3301.9 \mathrm{~g} / \mathrm{mol}$ for the tetramer $\{[\mathrm{Ag}][1-$ $\left.\left.\mathrm{P}_{3}\right]\right\}_{4}$. Similarly, the molecular weight of the $[\mathrm{K}]\left[1-\mathrm{P}_{3}\right]$ salt in solution was determined to be $1897.8 \mathrm{~g} / \mathrm{mol}$, close to the expected value of $1513.4 \mathrm{~g} / \mathrm{mol}$ for dimer $\left\{[\mathrm{K}]\left[\mathbf{1}-\mathrm{P}_{3}\right]\right\}_{2}$.
[5] Velian, A.; Cummins, C. C. Chem. Sci. 2012, 3, 1003-1006.
[6] Hulley, E. B.; Wolczanski, P. T.; Lobkovsky, E. B. Chem. Commun. 2009, 6412-6414.
[7] Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
[8] Xpert HighScore Plus Program, Version 2.2; PANanalytical: Almelo, The Netherlands, 2002.
[9] Sheldrick, G. M. SHELXTL; Bruker AXS, Inc.: Madison, WI (USA), 2005-2011.
[10] Sheldrick, G. M. Acta Crystallogr., Sect. A: Fundam. Crystallogr. 1990, 46, 467-473.
[11] Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122.
[12] Sheldrick, G. M. SHELXL-97: Program for crystal structure determination; University of Göttingen, 1997.
[13] Müller, P.; Herbst-Irmer, R.; Spek, A. L.; Schneider, T. R.; Sawaya, M. R. In Crystal Structure Refinement: A Crystallographer's Guide to SHELXL; Müller, P., Ed.; IUCr Texts on Crystallography; Oxford University Press: Oxford, 2006.
[14] These data can be obtained free of charge from The Cambridge Crystallographic Data Centre, http://www.ccdc.cam.ac.uk/data_request/cif.


[^0]:    *Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 02139-4307 E-mail: ccummins@mit. edu

[^1]:    ${ }^{a} \mathrm{GooF}=\left[\frac{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right]}{(n-p)}\right]^{\frac{1}{2}}{ }^{b} R_{1}=\frac{\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|}{\Sigma\left|F_{o}\right|} ; w R_{2}=\left[\frac{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right.}{\Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]}\right]^{\frac{1}{2}} ; w=\frac{1}{\sigma^{2}\left(F_{o}^{2}\right)+(a P)^{2}+b P} ; P=\frac{2 F_{c}^{2}+\max \left(F_{o}^{2}, 0\right)}{3}$

[^2]:    ${ }^{a}$ GooF $=\left[\frac{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right]}{(n-p)}\right]^{\frac{1}{2}} b R_{1}=\frac{\Sigma| | F_{o}\left|-\left|F_{c}\right|\right|}{\Sigma\left|F_{o}\right|} ; w R_{2}=\left[\frac{\Sigma\left[w\left(F_{o}^{2}-F_{c}^{2}\right)^{2}\right.}{\Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]}\right]^{\frac{1}{2}} ; w=\frac{1}{\sigma^{2}\left(F_{o}^{2}\right)+(a P)^{2}+b P} ; P=\frac{2 F_{c}^{2}+\max \left(F_{o}^{2}, 0\right)}{3}$

