ELECTRONIC SUPPLEMENTARY INFORMATION

Charge-Displacement Analysis as a Tool to Study Chalcogen Bonded Adducts and Predict their Association Constants in Solution[†]

Gianluca Ciancaleoni,^{a*} Claudio Santi,^b Mirco Ragni,^c Antonio Luiz Braga^a

^a Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil

^b Dipartimento di Scienze Farmaceutiche, Università di Perugia, Via del Liceo 1, 06134,

Perugia, Italy

^c Departamento de Física, Universidade Estadual de Feira de Santana, 44036-900 Feira de Santana, BA, Brazil

*Email: g.ciancaleoni@ufsc.br

Figure S1. Charge Displacement function for 3aCl calculated with different XC functionals. The black dots represent the *z* coordinate of the atoms. The red vertical line identifies a suitable boundary between the two fragments.

Figure S2. Charge Displacement function for the 2X adducts. The black dot represent the z coordinate of the tellurium, always placed at the origin. The red vertical band identifies the range of the inter-fragment boundaries.

Figure S3. Charge Displacement function for the 4X adducts. The black dot represent the z coordinate of the tellurium, always placed at the origin. The red vertical band identifies the range of the inter-fragment boundaries.

Figure S4. Charge Displacement function for the 5X adducts. The black dot represent the z coordinate of the tellurium, always placed at the origin. The red vertical band identifies the range of the inter-fragment boundaries.

Figure S5. 3D contour plot of the change of electronic density upon formation of the adduct $2NO_3$. Blue (red) isosurfaces identify regions in which the electron density increases (decreases). Density value at the isosurfaces: ± 0.002 au.

Figure S6. 3D contour plot of the change of electronic density upon formation of the adduct **2Q**. Blue (red) isosurfaces identify regions in which the electron density increases (decreases). Density value at the isosurfaces: ± 0.002 au.

Figure S7. Linear correlation between ω and the lengthening of N¹-Te for the 2-5X adducts (r² = 0.8889). Adduct **3aQ** has been excluded from the fitting procedure since its value of ω is affected not only by the Te^{...}X interaction (see main text).

Figure S8. Charge Displacement functions for the $IC_6F_5\cdots Cl^-$ and $IC_6F_5\cdots Q$ adducts. The iodine is always placed at the origin, while the anion is always placed on the +*z* semiaxis. The black and red vertical lines identify the inter-fragment boundaries for $IC_6F_5\cdots Cl^-$ and $IC_6F_5\cdots Q$, respectively. Aside are shown the 3D contour plots of the change of electronic density upon formation of the adduct for $IC_6F_5\cdots Cl^-$ (top) and $IC_6F_5\cdots Q$ (down), respectively. Blue (red) isosurfaces identify regions in which the electron density increases (decreases). Density value at the isosurfaces: ± 0.002 au.

Compound	ω (e)	$q_{ m H}$ $^{ m a}$	Compound	ω (e)	$q_{ m H}{}^{ m a}$
2 Br	0.249	-0.250	3a Br	0.277	-0.288
2 Cl	0.278	-0.276	3 aCl	0.300	-0.306
2 I	0.234	-0.241	3aI	0.269	-0.281
2 NO ₃	0.210	-0.217	3a NO ₃	0.225	-0.230
2Q	0.143	-0.143	3aQ	0.141	-0.163
4Br	0.278	-0.284	5 Br	0.284	-0.287
4Cl	0.303	-0.302	5 Cl	0.307	-0.305
4 I	0.270	-0.278	51	0.274	-0.283
4 NO ₃	0.244	-0.240	5 NO ₃	0.248	-0.247
4Q	0.160	-0.160	5Q	0.170	-0.172
6a SPh	0.376	-0.370	6bSPh	0.330	-0.336
6aSPh	0.376	-0.370	6bSPh	0.330	-0.336

Table S1. List of ω and $q_{\rm H}$ values, in electrons, for all the compounds studied.

^a $q_{\rm H}$ is the charge of the telluradiazole as computed by the Hirshfeld charge analysis.

XYZ Coordinates of optimized compounds ((B97D3/def2-TZVP/ECP on I)

C ₆ F ₅ I Cl ⁻			
Cl	0.0000	-0.0000	-2.7570
I	0.0000	0.0000	0.0000
С	0.0000	0.0001	2.2732
С	0.0000	0.0002	5.1071
С	0.0003	-1.1848	3.0063
С	-0.0003	1.1850	3.0062
С	-0.0003	1.2063	4.4039
С	0.0003	-1.2059	4.4041
F	0.0006	-2.3875	2.3807
F	0.0006	-2.3729	5.0927
F	-0.0006	2.3734	5.0925
F	-0.0006	2.3877	2.3805
F	0.0000	0.0003	6.4587

C₆F₅I^{...}Q

I	0.0000	0.0000	0.0000
С	-0.0074	0.0070	2.1631
С	-0.0246	0.0174	4.9846
С	-0.0153	-1.1858	2.8901
С	-0.0080	1.2052	2.8814
С	-0.0166	1.2236	4.2792
С	-0.0239	-1.1939	4.2881
F	-0.0155	-2.3767	2.2609
F	-0.0317	-2.3522	4.9680
F	-0.0173	2.3868	4.9506
F	-0.0009	2.3914	2.2435
F	-0.0330	0.0224	6.3248
Ν	0.0000	-0.0000	-2.7594
С	0.2042	1.3837	-3.2453
С	-1.3004	-0.5127	-3.2455
С	-1.3465	-0.5356	-4.8091
С	0.2066	1.4357	-4.8091
С	-0.0016	0.0017	-5.3402
Н	-0.0023	0.0024	-6.4362
Н	1.1542	1.7397	-2.8308
Н	-1.4356	-1.5158	-2.8255
Н	-2.1705	0.0871	-5.1798
Н	-0.5959	2.0890	-5.1743
Н	-0.5984	1.9995	-2.8239
Н	-2.0814	0.1341	-2.8300
Н	-1.5109	-1.5571	-5.1751
Н	1.1582	1.8366	-5.1801
С	1.1374	-0.8940	-4.8110
Н	2.1033	-0.5232	-5.1768
Н	1.0110	-1.9185	-5.1831
С	1.0952	-0.8680	-3.2473
Н	0.9287	-1.8694	-2.8344
Н	2.0305	-0.4818	-2.8265