Electronic Supplementary Information (ESI)

Phenolate Based Metallomacrocyclic Xanthate Complexes of Co^{II}/ Cu^{II} and Their Exclusive

Deployment in [2:2] Binuclear N, O-Schiff Base Macrocycle Formation and in vitro

Anticancer Studies[†]

Rahul Kadu,^a Vinay K. Singh,^{*a} Hetal Roy,^b Pallepogu Raghavaiah^c and Shaikh M. Mobin^d

[†] Dedicated to Professor Pradeep Mathur on the occasion of his 60th Birthday

^aDepartment of Chemistry, Faculty of Science, The M. S. University of Baroda, Vadodara- 390 002, India

^bDepartment of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara-390 002, India

^cNational Single Crystal X-ray Diffraction Facility, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India

^dNational Single Crystal X-ray Diffraction Facility, IIT Bombay, Powai, Mumbai 400 076, India

*Email: vinay.singh-chem@msu.ac.in

Contents

- General Methods and Materials
- Analytical Methods
- Synthesis
- Spectral Data
- Powder XRD
- X-ray Crystallography
- UV-visible absorption and emission
- Computational Investigations
- Cytotoxicity Study
- Thermogravimetric Study
- References

General Methods and Materials. The reagents such as 4,4'-diaminodiphenyl ether (99%), CS₂ (99%), 2-hydroxybenzaldehyde (98%) and 2-hydroxynaphthaldehyde (98%) were purchased from National Chemicals, Merck and Chemlabs, respectively. All other chemicals were obtained from commercial sources and were used without further purification. All the reactions and manipulations were performed under an inert atmosphere.

Analytical Methods. Elemental analyses were performed on a Perkin-Elmer Series II CHNS/O Analyser 2400. Mass spectra were obtained on Thermo Scientific DSQ-II, Water's QTOF and AB SCIEX 3200 Q TRAP LC/MS/MS system. IR (KBr pellets) spectra were recorded in the

4000-400 cm⁻¹ range using a Perkin-Elmer FTIR Spectrometer. The NMR spectra were obtained on a Bruker 400 MHz spectrometer in DMSO-d6 unless otherwise noted. Single crystal X-ray analysis was carried out on Oxford diffraction X-Calibur and Agilent's Gemini diffractometer equipped with Eos CCD detector. UV–visible spectra were recorded on a Perkin Elmer Lambda 35 UV–vis spectrophotometer. TGA/DTA plots were obtained using SII TG/DTA 6300 in flowing N₂ with a heating rate of 10 °C min⁻¹. GC analysis was carried out on CLARUS500, PE AutoSystem type GC equipped with FID detector. Powder X-ray diffraction studies were performed on a 'X Calibur, Eos, Gemini' X-ray diffractometer using Cu source, CrysAlisPro data reduction: Agilent Technologies Version 1.171.36.28 program(s) used to process the data and the 'POWDERX' program for indexing the powder XRD data.

Synthesis

Ligand precursors L¹ and L². To a solution of 2-hydroxybenzaldehyde (3 mmol, 366.36 mg) or 2-hydroxynaphthaldehyde (3 mmol, 516.54 mg) in 10 mL of toluene containing 2-3 drops of glacial acetic acid were added 4, 4'-diaminodiphenyl ether (1 mmol, 200 mg) with rigorous stirring. The reaction mixture was refluxed for 2 hrs using Dean-Stark apparatus. This reaction is outlined in Scheme S1. The reaction mixture was cooled at room temperature and solvent was evaporated under vacuum, washed with chilled absolute ethanol followed by diethyl ether to yield the products L¹ and L². These compounds were dried under vacuum and samples were taken for analysis.

4,4'-bis(2-hydroxybenzylideneamino)diphenyl ether (L¹). Yield: *ca* 404 mg, 99%, Mp: 213 °C. Anal. Calcd for [C₂₆H₂₀N₂O₃]: C, 76.45; H, 4.94; N, 6.86. Found: C, 76.40; H, 4.95; N, 6.89. Mass (MS ES+): 413.1730 (M+2Li), (42%); 414.1868 (M+2 Li+H), (10%). IR (KBr pellet, cm⁻¹): 3426m br v(OH), 1618s v(C=N). ¹H NMR (400 MHz, CDCl₃): (δ from TMS) 6.970(td, 2*H*-*Ph*), 7.05(dd, 2*H*-*Ph*), 7.115(dt, 4*H*-*Ph*), 7.34(dt, 4*H*-*Ph*), 7.41(m, 4*H*-*Ph*), 8.659(s, 2*H*-N=C*H*), 13.277(s, 2*H*-O*H*). ¹³C NMR (400 MHz, CDCl₃): (δ from TMS) 117.29, 119.16, 119.70, 122.60, 132.25, 133.29, 156.17 (*all corresponds to Ph*), 161.19, 161.83(–N=CH). DEPT 135 (400 MHz, CDCl₃): (δ from TMS) 117.28, 119.16, 119.70, 122.61, 132.25, 133.20 (*all CH of Ph*), 161.84(–N=CH).

4,4'-bis(2-hydroxynaphthylmethylideneamino)diphenyl ether (L²). 475 mg, 93%, Mp: 164 °C. Anal. Calcd for $[C_{34}H_{24}N_2O_3]$: C, 80.30; H, 4.76; N, 5.51. Found: C, 80.38; H, 4.72; N, 5.45. Mass (MS ES+): 510.52 (M+H); (30%). IR (KBr pellet, cm⁻¹): 3437s br v(OH), 1619s v(C=N). ¹H NMR (400 MHz, CDCl₃): (δ from TMS) 7.159(m, 6*H-Ph*), 7.38(m, 6*H-Ph*), 7.55(td, 2*H-Ph*), 7.754(d, 2*H-Ph*), 7.84(d, 2*H-Ph*), 8.15(d, 2*H-Ph*), 9.39(s, 2*H-*N=C*H*), 15.529(s, 2*H-OH*). ¹³C NMR (400 MHz, CDCl₃): (δ from TMS) 108.97, 118.94, 119.93, 121.72, 121.97, 123.57, 127.43, 128.07, 129.42, 133.10, 136.31, 141.59, 155.05, 155.82 (*all corresponds to Ph*), 168.69; (–N=CH).

Scheme S1: General scheme for the synthesis of diimines L^1 and L^2 .

Spectral Data

Characterization of L¹, L², K₂xan¹ and K₂xan². The broad peak appeared in the region of 3426-3437 cm⁻¹ and the sharp peak in the region 1618-1619 cm⁻¹ for L¹-L² are attributable to the v(OH) and v(N=C) vibrations respectively which is characteristic of Schiff bases and suggest the

formation of desired structures. The IR bands appeared are in accordance to the literature reports of similar compounds.¹ Disappearance of the IR absorption peak in the range of 3426-3437 cm⁻¹ together with appearance of new bands in 1456-1493 cm⁻¹ and 1084-1109 cm⁻¹ region suggests the deprotonation of phenolic –OH and formation of –OCSS₂ moiety.

Schiff base precursors L^1 , L^2 and xanthate ligands K_2xan^1 , K_2xan^2 were characterized by ¹H and ¹³C NMR. The signals appeared at 8.659 and 9.39 ppm in ¹H NMR spectra as well as signals appeared at 161.83 and 168.69 in ¹³C NMR spectra for the precursors L¹ and L² respectively are due to -N=CH moiety which are the characteristic signals for the Schiff base compounds. Phenolic –OH have been appeared as a broad singlet at 13.277 and 15.529 ppm for L^1 and L^2 respectively. The remaining signals observed in the NMR spectra in the range of 6.57-8.15 ppm could be assigned to the aromatic hydrogen atoms which are generally obtained as multiplets, as a result of coupling of aromatic protons and 108-162 ppm to aromatic carbon atoms of Schiff base precursors. ¹H spectra of xanthate ligands K_2xan^1 and K_2xan^2 clearly showed the disappearance of signal for phenolic -OH which is previously present in L¹ and L² precursors. Generally, the most characteristic downfield signals appeared at 190.86 ppm and 190.24 ppm in the ¹³C NMR spectra of xanthate ligands K_2xan^1 and K_2xan^2 , respectively evidently confirms the formation of xanthate moiety from phenolic -OH. Due to the incorporation of xanthate moiety in the molecule leads to the shifting of electron density from aromatic ring to xanthate moiety which results into the downfield signal (0.5-1.0 ppm) for -N=CH moiety compared to respective Schiff base precursor.

Mass spectral study. Notably, similar reactivity is depicted by the similar fragmentation pattern observed for a set of compounds i.e. for compounds bearing similar functionalities in the molecular framework. The binuclear macrocyclic complexes **2**, **6-7** were characterized by prominent molecular ion peak as shown in the mass spectra, summarized in Figure S1-S3.

Figure S1. ES-MS of binuclear metallamacrocyclic Co^{II} xanthate complex 2.

Figure S2. ES-MS of binuclear metallamacrocyclic Co^{II} N, O-Schiff base complex 6.

The stacked IR spectra of K_2xan^1 , its binuclear xanthate complex 1 and corresponding binuclear *N*,*O*-Schiff base complex 5 as well as K_2xan^1 , its binuclear xanthate complex 3 and corresponding binuclear *N*,*O*-Schiff base complex 7 are given in Figure S4-S5, which clearly reveal the structural variations.

Figure S4: Representative IR spectra confirming the structural variation in K₂xan¹, 1 and 5.

Figure S5: Representative IR spectra confirming the structural variation in K_2xan^1 , 3 and 7.

-S7-

Powder XRD. The inadequate stability of the freshly synthesized xanthate ligands and their metal complexes in solvents, especially chlorinated solvents limited the crystallization attempts. Hence, the powder X-ray diffraction study performed on representative compounds (K_2xan^1 , 1, 3, 5 and 7) and it suggests the microcrystalline nature of these samples. Further it helped us to understand structural characteristics like crystal lattice, lattice parameters. Notably, the results of the XRD analysis for xanthate ligand K_2xan^1 and its Co^{II}/Cu^{II} complexes 1 and 3 as well as their corresponding Schiff base complexes 5 and 7 do not match well as they have different crystal packing. (Figure S15 and S16) In spite of their structural differences, there persists some obvious similarity in the patterns in these compounds because of the presence of the common molecular framework which remains intact during the course of the preparation.

Figure S15. Powder X-ray diffraction pattern for a set of compounds K₂xan¹, 1 and 5

Figure S16. Powder X-ray diffraction pattern for a set of compounds K_2xan^1 , 3 and 7. The powder XRD data for these samples have been successfully indexed and refined by least square refinement with the help of commonly used² program³ 'POWDERX' and the details of the indexed peak are given in Table S1.

I wold off I off of II hay willing with a work for it will be and the	Table S1. Power X-ray	diffraction	data for F	K ₂ xan ¹ ,	1, 3	5 and 7.
---	-----------------------	-------------	-------------------	-----------------------------------	------	-----------------

Powder	h	k	1		20		d spa	acing	Intensity
pattern line				Exp.	Calc.	Diff	Exp.	Calc.	-
(a) Kxan-	-1: Or	thor	homl	<i>vic (P): a</i> =	13.66 Å, b	= 15.5 Å,	c = 21.9 Å	; $\alpha = \beta = \gamma$	= 90°.
1	1	0	1	7.619	7.627	-0.009	11.60344	11.59019	25.63
2	0	1	2	9.838	9.89	-0.051	8.98996	8.9434	9.02
3	0	2	0	11.483	11.417	0.066	7.70575	7.75	18.69
4	2	0	2	15.263	15.289	-0.026	5.805	5.79509	14.07
5	2	2	0	17.32	17.305	0.014	5.11985	5.12409	2.36
6	3	0	0	19.453	19.495	-0.042	4.563	4.55333	35.61
7	0	4	0	22.908	22.95	-0.042	3.88204	3.875	4.52
8	1	3	4	24.522	24.57	-0.048	3.63006	3.62308	29.67
9	0	3	5	26.629	26.681	-0.052	3.34736	3.34101	4.98
10	0	5	1	29.081	29.092	-0.01	3.07046	3.0694	9.95
11	0	3	6	30.004	29.973	0.031	2.97812	2.98113	7.23
12	2	0	7	31.448	31.45	-0.002	2.84453	2.84436	6.63
13	5	1	2	34.23	34.32	-0.09	2.6195	2.61281	2.72
14	1	3	8	37.79	37.767	0.023	2.38051	2.38188	2.68
15	1	6	4	39.134	39.115	0.019	2.30179	2.30288	2.1
16	6	0	2	40.502	40.467	0.035	2.22716	2.229	3.26
17	1	7	2	42.134	42.157	-0.023	2.1446	2.14347	1.93
18	1	7	4	44.641	44.637	0.004	2.02979	2.02996	2.42
19	7	0	0	46.537	46.537	0	1.95142	1.95143	2.95
20	5	6	2	49.268	49.251	0.017	1.84946	1.85006	3.06
21	4	2	10	50.919	50.914	0.005	1.7933	1.79345	1.94
(b) 1: Monocli	inic (I): a	= 14	.5 Å, b = 18	8.03 Å, <i>c</i> =	15.35 Å;	$\alpha = \gamma = 90^{\circ}$	and $\beta = 99$.1° .
1	0	1	1	7.683	7.62	0.063	11.49785	11.59306	1.25
2	0	2	0	9.82	9.811	0.009	9.00002	9.00809	0.86
3	-1	2	0	11.522	11.599	-0.077	7.67391	7.62287	1.18
4	-1	0	2	12.321	12.32	0.002	7.17773	7.17873	0.67
5	2	0	1	14.492	14.495	-0.003	6.10719	6.10592	0.36
6	2	1	1	15.398	15.31	0.088	5.74981	5.78283	0.75
7	-1	3	1	16.704	16.693	0.011	5.30297	5.30644	0.28
8	-1	0	3	17.692	17.667	0.025	5.0091	5.01614	0.31

9	-2	3	0	19.275	19.282	-0.007	4.60117	4.59942	2.83
10	-2	0	3	19.847	19.841	0.006	4.46979	4.47121	2.51
11	0	3	3	22.998	22.996	0.002	3.8641	3.86435	0.3
12	1	3	3	24.588	24.559	0.029	3.61765	3.6219	3.15
13	1	5	1	26.343	26.377	-0.033	3.38043	3.37623	0.29
14	2	4	2	27.079	27.041	0.038	3.29029	3.29484	0.29
15	-4	3	0	29.006	29.035	-0.028	3.07587	3.07292	1.37
16	-4	4	2	32.63	32.659	-0.029	2.74208	2.73972	0.33
17	-3	4	4	34.158	34.175	-0.017	2.62283	2.6216	0.29
18	0	7	0	34.816	34.83	-0.014	2.57472	2.57374	0.3
19	3	3	4	35.797	35.773	0.024	2.50643	2.50807	0.25
20	-1	7	3	39.317	39.314	0.003	2.28973	2.28991	0.26
21	-4	0	6	40.303	40.31	-0.007	2.23597	2.23561	0.39
22	3	8	0	44.459	44.453	0.005	2.03614	2.03638	0.22
$\frac{-}{23}$	5	Õ	5	46.979	46.969	0.01	1.9326	1.933	0.33
24	-6	1	6	48.394	48.415	-0.021	1.87934	1.87858	0.28
25	-7	1	5	49 951	49 944	0.007	1 82436	1 82459	0.21
26	-8	0	1	50 389	50 386	0.003	1 80953	1 80962	0.22
(c) 3. Monoci	linic (P). a	- 16	2 h = 17	16 Å c = 1	$50 \text{ Å} \cdot \alpha =$	$a = 90^{\circ}$ and	$d R = 96.15^{\circ}$	
	(IIIC)). u	- 10	.2 R, U = 17	7.0 A, c = 1	$5.0 \text{ A}, \alpha - 0.022$	$\gamma = 90^{\circ} anoten 11^{\circ} 000000000000000000000000000000000000$	$\mu = 90.13$	
1	-1 1	1	1	/.418	/.44	-0.022	11.90844	11.8/299	2.8/
2	1	1	1	9.810	9.8//	-0.001	9.00340	8.94/81	1.15
5	1	1	0	11.51/	11.458	0.059	1.0/123	/./1004	0.97
4	0	1	2	12.841	12.893	-0.052	0.88830	6.860/4	0.41
5	1	I	2	14.5	14.514	-0.015	6.10404	6.09/98	0.81
6	-2	0	2	15.355	15.304	0.052	5./6569	5.78502	0.34
7	2	2	1	16.476	16.491	-0.015	5.37596	5.371	0.28
8	I	3	1	17.397	17.354	0.043	5.09336	5.10601	0.58
9	-2	2	2	18.264	18.343	-0.079	4.85355	4.83291	0.52
10	-2	3	1	19.271	19.28	-0.009	4.60208	4.60006	1.82
11	2	2	2	19.856	19.829	0.027	4.46783	4.4739	1.66
12	-4	0	0	22.124	22.074	0.05	4.01464	4.0236	0.7
13	-3	3	1	22.776	22.769	0.007	3.90114	3.90234	0.72
14	-3	3	2	24.581	24.602	-0.021	3.61867	3.6156	1.94
15	1	5	1	26.725	26.736	-0.011	3.33303	3.3317	0.34
16	0	5	2	28.033	28.03	0.003	3.18038	3.18073	0.22
17	-5	0	2	29.005	28.992	0.014	3.076	3.0774	0.78
18	-3	5	1	30.578	30.607	-0.029	2.92123	2.91855	0.38
19	1	6	1	31.704	31.692	0.012	2.82005	2.82105	0.3
20	4	4	2	33.32	33.337	-0.017	2.68683	2.6855	0.7
21	2	2	5	34.68	34.701	-0.021	2.58453	2.583	0.27
22	-1	6	3	35.675	35.671	0.003	2.51473	2.51494	0.4
23	-1	7	1	36.539	36.571	-0.032	2.45719	2.45514	0.31
24	0	2	6	37.577	37.601	-0.024	2.39167	2.39019	0.28
25	1	3	6	40.35	40.346	0.004	2.23349	2.23369	0.72
26	2	5	5	42.142	42.136	0.006	2.14254	2.14284	0.19
27	6	5	1	43.357	43.328	0.029	2.08528	2.08662	0.21
28	-5	2	6	44.829	44.802	0.027	2.02017	2.02133	0.27
29	-5	7	2	46.64	46.632	0.007	1.94587	1.94617	0.29
30	-5	7	3	48.298	48.298	0	1.88287	1.88287	0.31
31	2	8	4	50.076	50.049	0.026	1.82011	1.821	0.22
(d) 5: Orthor	homhic	(P)	: <i>a</i> =	26.4 Å b =	= 12.4 Å c	= 28.9 Å·	$\alpha = \beta = \nu =$	90°.	
1	0	1	1	7 669	7 758	-0.089	11 52802	11 39535	6 54
2	1	0	3	9 707	9 773	-0.067	9 11165	9 04967	53
3	2	1	2	11 503	11 548	-0.046	7 69266	7 66242	6 15
4	0	0	$\frac{2}{4}$	12 229	12.25	-0.021	7 23732	7 225	3 96
-⊤ 5	2	0	- - 1	13 916	13 973	-0.057	63636	6 33774	2.20
6	0	0	- - 5	15 351	15 320	0.027	5 77160	5 78	2.55
7	2	1	2 2	17 405	17.32°	_0.022	5 09508	5 0916	3 31
1	5	1	-	1/. TUJ	1/.71/	0.012	2.07200	2.0710	2.21

9 1 3 1 22.003 21.982 0.021 4.03965 4.04342 1 10 4 2 4 23.248 23.216 0.033 3.82592 3.83121 1 11 0 0 8 24.634 24.643 0.008 3.6137 3.6125 1 12 1 2 7 26.144 26.15 -0.006 3.64841 3.40765 2 13 1 0 9 28.032 27.99 0.041 3.183 3.18762 2 14 1 4 0 29.024 29 0.024 3.07635 3.07884 0 15 3 2 8 30.381 30.384 0.002 2.94198 2.94175 2 16 4 4 2 32.507 32.505 0.002 2.75424 2.75445 2 17 4 3 7 33.585 33.549 0.037 2.66828 2.67111 1 18 3 5 1 37.862 37.816 0.046 2.37616 2.37892 1 19 1 2 12 40.313 40.319 -0.006 2.23716 2.23684 1 20 11 1 7 44.245 44.259 -0.014 2.04703 2.04644 1 21 8 0 12 46.716 46.69 0.025 1.94437 1.94537 1 22 2 1 15 48.292 48.297 -0.005 1.88451 1.88432 2 23 13 2 6 50.971 50.976 -0.005 1.88451 1.88432 1 24 0 1 1 7.669 7.758 -0.089 11.52802 11.39535 0 (e) 7: Monoclinic (P): a = 16.8 Å, b = 15.0 Å, c = 19.4 Å; a = $p = 90^{\circ}$ and $\beta = 96.15^{\circ}$. 1 0 1 1 7.517 7.466 0.023 6.97228 6.9848 0 3 0 2 1 12.686 12.663 0.023 6.97228 6.9848 0 4 0 0 3 13.747 13.773 -0.025 6.43629 6.42452 1 5 0 1 3 15.077 14.991 0.085 5.8717 5.90494 6 6 -1 1 3 15.405 15.404 1E-3 5.74709 5.74761 1 7 -1 2 2 15.638 15.547 0.092 5.66202 5.69519 1 8 3 1 1 18.089 18.045 0.044 4.90001 4.91183 1 9 1 2 3 19.365 19.354 0.01 4.58006 4.58248 1 10 -2 1 4 21.117 21.111 0.066 4.20384 4.20503 1 11 -1 0 5 23.119 23.099 0.02 3.84411 3.8473 1 2 2 1 6 6.38 15.547 0.092 5.66202 5.69519 1 8 3 1 1 18.089 18.045 0.044 4.90001 4.91183 1 9 1 2 3 19.365 19.354 0.01 4.58006 4.58248 1 10 -2 1 4 21.117 21.111 0.006 4.20384 4.20503 1 11 -1 0 5 23.119 23.099 0.02 3.84411 3.8473 1 2 2 3 3 25.565 25.588 0.023 3.48158 3.4785 1 3 -3 3 3 26.818 26.813 0.005 3.32162 3.32223 1 14 5 1 1 28.248 28.228 0.019 3.15672 3.15886 1 15 -2 1 6 29.307 29.29 0.017 3.04444 3.04672 0 16 -3 0 6 3.0284 33.301 -0.016 2.68967 2.68838 0 19 5 2 3 33.715 33.72 -0.005 2.65629 2.6559 0 20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 0 18 -4 0 6 33.284 33.301 -0.016 2.68967 2.68838 0 19 5 2 3 33.715 33.72 -0.005 2.65529 2.65559 0 20 1 4 5 34.163 34.167 -0.004 2.62243 2.6221	8	5	1	2	19.266	19.275	-0.009	4.60686	4.60468	29.43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	3	1	22.003	21.982	0.021	4.03965	4.04342	5.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	4	2	4	23.248	23.216	0.033	3.82592	3.83121	3.07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	0	0	8	24.634	24.643	-0.008	3.6137	3.6125	19.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	2	7	26.144	26.15	-0.006	3.40841	3.40765	2.09
1414029.024290.0243.076353.078840.0151532830.38130.384-0.0022.941982.941752.941751644232.50732.5050.0022.754242.754452.754451743733.58533.5490.0372.668282.671111835137.86237.8160.0462.376162.3789219121240.31340.319-0.0062.237162.2368420111744.24544.259-0.0142.047032.0464421801246.71646.690.0251.844371.9453722211548.29248.297-0.0051.844511.8843223132650.97150.976-0.0051.79161.79144240117.6697.758-0.08911.5280211.3953510117.5177.4660.05111.751411.831812-11211.62311.69-0.0677.607477.56428302112.68612.6630.0236.972286.9848400313.74713.773-0.0256.436296.42452501315.07714.9910.0855.8717 </td <td>13</td> <td>1</td> <td>0</td> <td>9</td> <td>28.032</td> <td>27.99</td> <td>0.041</td> <td>3.183</td> <td>3.18762</td> <td>2.11</td>	13	1	0	9	28.032	27.99	0.041	3.183	3.18762	2.11
1532830.38130.384 -0.002 2.941982.941752.941	14	1	4	0	29.024	29	0.024	3.07635	3.07884	6.17
16442 32.507 32.505 0.002 2.75424 2.75445 2.75445 17437 33.585 33.549 0.037 2.66828 2.67111 18351 37.862 37.816 0.046 2.37616 2.37892 191212 40.313 40.319 -0.006 2.23716 2.23684 201117 44.245 44.259 -0.014 2.04703 2.04644 218012 46.716 46.69 0.025 1.94437 1.94537 222115 48.292 48.297 -0.005 1.88451 1.88432 231326 50.971 50.976 -0.005 1.7916 1.79144 24011 7.669 7.758 -0.089 11.52802 11.39535 1011 7.517 7.466 0.051 11.7514 11.83181 2 -1 12 11.623 11.69 -0.067 7.6074 7.56428 3021 12.686 12.663 0.023 6.97228 6.9848 4003 13.747 13.773 -0.025 6.43629 6.42452 1.7766 5013 15.077 14.991 0.085 5.8717 5.90494 6 -1 1 31.805 15.404 $1E-3$ 5.74	15	3	2	8	30.381	30.384	-0.002	2.94198	2.94175	2.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	4	4	2	32.507	32.505	0.002	2.75424	2.75445	3.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	4	3	7	33.585	33.549	0.037	2.66828	2.67111	1.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	3	5	1	37.862	37.816	0.046	2.37616	2.37892	9.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	1	2	12	40.313	40.319	-0.006	2.23716	2.23684	1.62
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20	11	1	7	44.245	44.259	-0.014	2.04703	2.04644	1.14
22211548.29248.297 -0.005 1.884511.8843223132650.97150.976 -0.005 1.79161.791442240117.6697.758 -0.089 11.5280211.395356(e) 7: Monoclinic (P): $a = 16.8$ Å, $b = 15.0$ Å, $c = 19.4$ Å; $a = \gamma = 90^{\circ}$ and $\beta = 96.15^{\circ}$.10117.5177.4660.05111.751411.831812 -1 1211.62311.69 -0.067 7.607477.564286302112.68612.6630.0236.972286.98486400313.74713.773 -0.025 6.436296.424521501315.07714.9910.0855.87175.904946 -1 1315.40515.4041E-35.747095.747617 -1 2215.63815.5470.0925.662025.6951983118.08918.0450.0444.900014.911831912319.36519.3540.014.580064.58248110 -2 1421.11721.1110.0063.21623.32223111 -1 0523.11923.0990.023.844013.847311223325.56525.58	21	8	0	12	46.716	46.69	0.025	1.94437	1.94537	1.67
23 13 2 6 50.971 50.976 -0.005 1.7916 1.7914 1.39535 (e) 7: Monoclinic (P): $a = 16.8$ Å, $b = 15.0$ Å, $c = 19.4$ Å; $a = \gamma = 90^{\circ}$ and $\beta = 96.15^{\circ}$. 1 0 1 1 7.517 7.466 0.051 11.7514 11.83181 2 1.623 11.69 -0.067 7.60747 7.56428 (f) 3 0 2 1 12.686 12.663 0.023 6.97228 6.9848 (f) 4 0 0 3 13.747 13.773 -0.025 6.43629 6.42452 1 5 0 1 3 15.077 14.991 0.085 5.8717 5.90494 6 -1 1 3 15.405 15.404 1E-3 5.74709 5.74761 1 7 -1 2 2 15.638 15.547 0.092 5.66202 5.69519 1 8 3 1 1 18.089 18.045 0.044 4.90001 4.91183 1 9 1 2 3 19.365 19.354 0.01 4.58006 4.58248 1 10 -2 1 4 21.117 21.111 0.006 4.20384 4.20503 1 11 -1 0 5 23.119 23.099 0.02 3.84401 3.8473 1 12 2 3 3 2.565 25.588 -0.023 3.48158 3.4785 1 3 -3 3 2.565 25.588 -0.023 3.48158 3.4785 1 3 -3 3 2.6818 26.813 0.005 3.32162 3.32223 1 4 5 1 1 28.248 28.228 0.019 3.15672 3.15886 1 5 -2 1 6 29.307 29.29 0.017 3.04494 3.04672 (f) 16 -3 0 6 30.638 30.584 0.053 2.9157 2.92065 1 7 5 3 1 32.986 32.985 0 2.71333 2.71336 1 18 -4 0 6 33.284 33.301 -0.016 2.68967 2.68838 (f) 9 5 2 3 33.715 33.72 -0.005 2.65629 2.6559 (f) 20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 (f) 16 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	22	2	1	15	48.292	48.297	-0.005	1.88451	1.88432	1.7
240117.6697.758-0.08911.5280211.395356(e) 7: Monoclinic (P): $a = 16.8$ Å, $b = 15.0$ Å, $c = 19.4$ Å; $a = \gamma = 90^{\circ}$ and $\beta = 96.15^{\circ}$.10117.5177.4660.05111.751411.8318142-11211.62311.69-0.0677.607477.564286302112.68612.6630.0236.972286.98486400313.74713.773-0.0256.436296.4245212501315.07714.9910.0855.87175.904946-11315.40515.4041E-35.747095.74761127-12215.63815.5470.0925.662025.6951913831118.08918.0450.0444.900014.9118313912319.36519.3540.014.580064.582481410-21421.11721.1110.0064.203844.205031411-10523.11923.0990.023.844013.8473151223326.81826.8130.0053.321623.322231413-3326.81826.8130.0053.21623.158861513-33 </td <td>23</td> <td>13</td> <td>2</td> <td>6</td> <td>50.971</td> <td>50.976</td> <td>-0.005</td> <td>1.7916</td> <td>1.79144</td> <td>3.74</td>	23	13	2	6	50.971	50.976	-0.005	1.7916	1.79144	3.74
(e) 7: Monoclinic (P): $a = 16.8$ Å, $b = 15.0$ Å, $c = 19.4$ Å; $a = \gamma = 90^{\circ}$ and $\beta = 96.15^{\circ}$. 1 0 1 1 7.517 7.466 0.051 11.7514 11.83181 4 2 -1 1 2 11.623 11.69 -0.067 7.60747 7.56428 (0) 3 0 2 1 12.686 12.663 0.023 6.97228 6.9848 (0) 4 0 0 3 13.747 13.773 -0.025 6.43629 6.42452 12 5 0 1 3 15.077 14.991 0.085 5.8717 5.90494 16 6 -1 1 3 15.405 15.404 1E-3 5.74709 5.74761 12 7 -1 2 2 15.638 15.547 0.092 5.66202 5.69519 12 8 3 1 1 18.089 18.045 0.044 4.90001 4.91183 12 9 1 2 3 19.365 19.354 0.01 4.58006 4.58248 12 10 -2 1 4 21.117 21.111 0.006 4.20384 4.20503 12 11 -1 0 5 23.119 23.099 0.02 3.84401 3.8473 12 12 2 3 3 25.565 25.588 -0.023 3.48158 3.4785 13 -3 3 2 6.818 26.813 0.005 3.32162 3.32223 14 4 5 1 1 28.248 28.228 0.019 3.15672 3.15886 12 15 -2 1 6 29.307 29.29 0.017 3.04494 3.04672 (0) 16 -3 0 6 30.638 30.584 0.053 2.9157 2.92065 12 17 5 3 1 32.986 32.985 0 2.71333 2.71336 (0) 18 -4 0 6 33.284 33.301 -0.016 2.68967 2.68838 (0) 19 5 2 3 33.715 33.72 -0.005 2.65629 2.6559 (0) 20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 (0)	24	0	1	1	7.669	7.758	-0.089	11.52802	11.39535	6.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(e) 7: Monoci	linic (P): a =	= 16.	8 Å, b = 15	.0 Å, c = 1	9.4 Å; α =	$\gamma = 90^{\circ}$ and	$d \beta = 96.15^{\circ}$	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	1	1	7.517	7.466	0.051	11.7514	11.83181	4.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	-1	1	2	11.623	11.69	-0.067	7.60747	7.56428	0.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	2	1	12.686	12.663	0.023	6.97228	6.9848	0.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	0	3	13.747	13.773	-0.025	6.43629	6.42452	1.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0	1	3	15.077	14.991	0.085	5.8717	5.90494	1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-1	1	3	15.405	15.404	1E-3	5.74709	5.74761	1.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	-1	2	2	15.638	15.547	0.092	5.66202	5.69519	1.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3	1	1	18.089	18.045	0.044	4.90001	4.91183	1.85
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	2	3	19.365	19.354	0.01	4.58006	4.58248	1.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	-2	1	4	21.117	21.111	0.006	4.20384	4.20503	1.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	-1	0	5	23.119	23.099	0.02	3.84401	3.8473	1.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2	3	3	25.565	25.588	-0.023	3.48158	3.4785	1.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	-3	3	3	26.818	26.813	0.005	3.32162	3.32223	1.46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	5	1	1	28.248	28.228	0.019	3.15672	3.15886	1.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	-2	1	6	29.307	29.29	0.017	3.04494	3.04672	0.97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	-3	0	6	30.638	30.584	0.053	2.9157	2.92065	1.09
18 -4 0 6 33.284 33.301 -0.016 2.68967 2.68838 0 19 5 2 3 33.715 33.72 -0.005 2.65629 2.6559 0 20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 0	17	5	3	1	32.986	32.985	0	2.71333	2.71336	0.76
19 5 2 3 33.715 33.72 -0.005 2.65629 2.6559 0 20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 0	18	-4	0	6	33.284	33.301	-0.016	2.68967	2.68838	0.77
20 1 4 5 34.163 34.167 -0.004 2.62243 2.62215 (19	5	2	3	33.715	33.72	-0.005	2.65629	2.6559	0.76
	20	1	4	5	34.163	34.167	-0.004	2.62243	2.62215	0.78
21 3 3 5 34.618 34.675 -0.057 2.58902 2.58492 (21	3	3	5	34.618	34.675	-0.057	2.58902	2.58492	0.75

In case of binuclear Schiff base complex **5** and **7**, deviation between the experimental powder XRD pattern and simulated powder XRD pattern obtained from single crystal X-ray diffraction study shows that the bulk properties of these materials are different from the single crystals obtained upon very slow evaporation of solvent. Notably the powder XRD data could be indexed in the similar lattice system as that of single crystals for **5** and **7** however the differences in the cell parameters probably arise due to the involvement of solvent molecules stabilizing the crystal structure.

X-ray Crystallography

Compound	5	6	7. <i>DMSO</i>	7. 2CH ₂ Cl ₂	8. CHCl ₃ .8H ₂ O
CCDC Number	986524	986523	986525	986526	1426720
Formula	C ₅₂ H ₃₆ Co ₂ N ₄ O ₆	C ₆₈ H ₄₄ Co ₂ N ₄ O ₆	$C_{54}H_{42}Cu_2N_4O_7S$	$C_{54}H_{40}Cl_4Cu_2N_4O_6$	C ₁₃₇ H ₁₀₄ Cl ₃ Cu ₄ N ₈ O ₂₀
Formula weight(amu)	930.71	1130.93	1018.06	1109.80	2526.66
T(K)	293(2)	298.15	295.0	150(2)	298.15
Crystal System	orthorhombic	monoclinic	orthorhombic	monoclinic	monoclinic
Space group	Pbca	$P2_1/c$	Pbca	C2/c	$P2_1/c$
a(Å)	26.3438(6)	11.840(3)	26.2828(4)	16.5132(3)	19.0398(9)
b(Å)	12.3067(3)	12.679(3)	12.25878(17)	14.6766(2)	21.6349(7)
c(Å)	28.9628(7)	37.680(8)	28.8218(4)	19.2170(3)	31.0856(15)
α(°)	90.00	90.00	90.00	90.00	90.00
β(°)	90.00	95.358(4)	90.00	96.1890(10)	100.470(5)
$\gamma(^{\circ})$	90.00	90.00	90.00	90.00	90.00
Cell volume (Å ³)	9389.9(4)	5632(2)	9286.2(2)	4630.24(13)	12591.7(9)
Z	8	4	8	4	4
Completeness to theta (%)	$(\theta = 72.16)\ 100$	$(\theta = 26.08) 99.7$	$(\theta = 27.36) 96.27$	$(\theta = 25.00)$ 99.8	$(\theta = 26.08) 99.7$
$\rho_{calc}g/cm^3$	1.317	1.334	1.456	1.592	1.333
µ/mm⁻¹	5.965	0.647	1.020	1.209	0.800
F(000)	3824.0	2328.0	4192.0	2264.0	5172.0
Radiation	$CuK\alpha (\lambda = 1.54184)$	MoK α ($\lambda = 0.71073$)	Mo K α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2θ range for data collection/°	9.84 to 144.32	3.4 to 52.16	6.38 to 54.72	6.88 to 50	6.58 to 65.68
Index ranges	$-31 \le h \le 31, -14 \le k \le$	$-14 \le h \le 14, -15 \le k \le$	$0 \le h \le 33, 0 \le k \le 15,$	$-19 \le h \le 19, -16 \le k \le$	-28 \leq h \leq 26, -29 \leq k \leq
	7, $-35 \le 1 \le 35$	$15, -46 \le l \le 46$	$0 \le l \le 36$	$17, -22 \le 1 \le 22$	$31, -46 \le l \le 44$
Reflections collected	23584	58626	10072	17040	160890
Independent reflections	$8695 [R_{int} = 0.0385,$	$11149 [R_{int} = 0.0774,$	$10072 [R_{int} = 0.0000,$	$4085 [R_{int} = 0.0177,$	$42728 [R_{int} = 0.1895,$
	$R_{sigma} = 0.0507$]	$R_{sigma} = 0.0678$]	$R_{sigma} = 0.0254$]	$R_{sigma} = 0.0151$]	$R_{sigma} = 0.5255$]
Data/restraints/parameters	8695/0/577	11149/0/721	10072/0/632	4085/0/316	42728/2/793
Goodness-of-fit on F ²	1.113	0.861	1.002	1.070	0.740
Final R indices [$I \ge 2\sigma(I)$]	$R_1 = 0.0593, wR_2 =$	$R_1 = 0.0581, wR_2 =$	$R_1 = 0.0391, wR_2 =$	$R_1 = 0.0247, wR_2 =$	$R_1 = 0.1272, wR_2 =$
	0.1861	0.1333	0.1117	0.0693	0.3435
R indices (all data)	$R_1 = 0.0959, wR_2 =$	$R_1 = 0.1301, wR_2 =$	$R_1 = 0.0547, wR_2 =$	$R_1 = 0.0285, WR_2 =$	$R_1 = 0.4173, wR_2 =$
	0.2087	0.1555	0.1200	0.0702	0.3977
Largest diff. peak/hole / e Å ⁻³	0.40/-0.28	0.44/-0.19	0.33/-0.62	0.42/-0.57	1.54/-0.55

Table S2 Crystal data and structure refinement for compounds 5-8.

Selected Bonds	Bond lengths (Å)	Selected Bonds	Bond angles (°)
	5		
O_6 — Co_1	1.901(3)	N_4 — Co_1 — O_6	94.61(15)
O ₂₉ —Co ₁	1.890(4)	$N_9 - Co_1 - O_{29}$	95.24(15)
$O_5 - Co_2$	1.884(3)	N_9 — Co_1 — O_6	141.76(18)
O_{15} — Co_2	1.908(4)	N_4 — Co_1 — O_{29}	140.78(19)
N_4 — Co_1	1.954(4)	$N_3 - Co_2 - O_{15}$	91.71(16)
$N_0 - Co_1$	1.988(4)	N_{16} — Co_2 — O_5	93.44(16)
$N_3 - Co_2$	1.972(4)	$N_3 - C_0 - O_5$	148.85(17)
N_{16} —C02	1.986(4)	$N_{16} - C_{02} - O_{15}$	146.15(19)
$N_3 - C_{40}$	1.283(6)	$N_3 - C_{40} - C_{52}$	126.9(5)
N ₁₆ —C ₇	1.432(6)	$N_{16} - C_7 - C_{14}$	120.0(4)
$N_4 - C_{10}$	1.422(6)	$N_4 - C_8 - C_{12}$	127.2(4)
$N_0 - C_{26}$	1 427(6)	$N_0 - C_{22} - C_{64}$	127.8(5)
119 030	1.127(0)	$C_{20} = O_{17} = C_{24}$	115 6(4)
		$C_{39} = C_{17} = C_{42}$	117 7(4)
	6	031 012 043	117.7(1)
$O_3 - Co_1$	1.893(2)	$N_1 - Co_1 - O_4$	94.27(13)
$O_4 - C_{O_1}$	1 897(3)	$N_2 - C_{0_1} - O_3$	93 62(11)
$O_5 - CO_2$	1 888(3)	$N_1 - Co_1 - O_2$	125 32(12)
$\Omega_{e} = C \Omega_{2}$	1 894(3)	$N_2 - C_0 - O_4$	121.76(13)
$N_1 - Co_1$	1 981(3)	$N_2 = C_{0_1} = O_4$	93 87(13)
$N_1 = Co_1$	1 972(3)	$N_3 = C_0 = O_1$	93 62(14)
$N_2 = Co_1$	1.972(3)	$N_4 = C_0 = O_6$	122 19(14)
$N_3 = CO_2$	1.960(3)	$N_1 - C_{02} - C_{05}$	119 57(13)
$N_4 = Co_2$	1.901(3) 1.292(4)	$N_4 = C_{12} = C_{13}$	127 7(4)
$N_1 = C_{25}$	1.292(1) 1.302(4)	$N_{4} = C_{40} = C_{48}$	126.6(4)
$N_2 = C_{36}$	1.302(4)	$N_4 = C_{58} = C_{59}$	120.0(4) 127 9(3)
$N_3 = C_{47}$	1.200(5)	$N_2 = C_{36} = C_{37}$	127.9(3) 129.2(4)
114 058	1.511(5)	$\Gamma_1 = C_{25} = C_{26}$	129.2(4) 116 4(3)
		$C_4 = O_1 = C_1$	118 0(3)
	7.DMSC	016 02 019	110.0(5)
$O_1 - Cu_1$	1.8922(17)	$O_1 - Cu_1 - N_{10}$	143,99(9)
$O_2 - C_{11}$	1 9012(16)	$O_2 - Cu_1 - N_{11}$	144 84(8)
N_{10} — Cu_1	1.9492(17)	$O_1 - Cu_1 - N_{11}$	94.98(7)
	1 9757(18)	$\Omega_2 - Cu_1 - N_{10}$	94 33(7)
$\Omega_2 - C \Pi_2$	1.9081(17)	$O_2 - Cu_2 - N_4$	91 68(7)
$O_4 - Cu_2$	1 8876(16)	$O_4 - Cu_2 - N_{21}$	93 43(8)
$N_4 - Cu_2$	1 9766(19)	$O_4 = O_{22} = N_{21}$	148 32(8)
$N_{4} - Cu_2$ $N_{21} - Cu_2$	1 9822(19)	$O_4 - Cu_2 - N_4$	150 90(8)
$N_{21} = C_7$	1 292(3)	$N_{10} - C_{15} - C_{27}$	126 5(2)
N_{21}	1.292(3) 1.297(3)	$\frac{N_{10}}{N_{11}} = \frac{C_{13}}{C_{27}} = C_{44}$	120.3(2) 120.7(2)
$N_{21} = C_{23}$	1.297(3) 1.304(3)	$N_{11} = C_{37} = C_{44}$	126.7(2)
$N_{10} = C_{15}$	1 288(3)	$N_{24} = C_{22} = C_{20}$	127.8(2)
111 055	1.200(3)	$\Gamma_{21} = C_{23} = C_{29}$	11542(18)
		$C_{28} = 0.5 = 0.30$	11750(17)
	7.CH ₂ Cl	20 00 042	117.50(17)
$O_1 - Cu_1$	1.893(13)	O_3 — Cu_1 — N_2	94.92(6)
O_3 — Cu_1	1.888(12)	$O_1 - Cu_1 - N_1$	94,11(6)
N_2 — Cu_1	1.976(14)	$N_2 - Cu_1 - O_1$	145.89(6)
N_1 — Cu_1	1.957(14)	$N_1 - Cu_1 - O_3$	145.29(6)
N2-C20	1.298(2)	$C_6 - C_7 - N_1$	125.87(17)
2 20		$C_{19} - C_{20} - N_2$	126.81(16)
		$C_{11} - O_2 - C_{24}$	115.91(13)

 Table S3 Selected structural parameters of 5-7 from single crystal X-ray study.

Description of Crystal Packing Patterns. The aromatic moieties present in the molecular framework potentially provide a hydrophobic surface capable of participating in noncovalent interactions such as $\pi...\pi$, CH... π , CH...O, Cl...O and/ or O...S in compounds 5-7. The details about non-covalent interactions like interatomic distances (Å), bond angles and α , β angles (°) are summarized in Table S2. The favorable α angles (angle between the line connecting Cg, H

atom and the normal to the phenyl ring plane) whereas the β angles (Figure S17) are large enough to facilitate CH... π interactions found in normal range, reflects strength of particular interactions.

Table S4. S	Significant intermolecular interactions	[Interatomic distances (Å	A), and bond angles
(°)] found i	n compounds 5-7 .		

Interactions	D—H	Α	D—H	HA	DA	<dha< th=""><th><α</th><th><β</th></dha<>	<α	<β
			5					
СНπ	H24 π (Cg: C2	2 C60 C53	0.932	2.590	3.521	176.87	5.3	176.87
	C46 C63 C44)	10 atoms						
	H61 π(Cg: C49	9 C59 C57	0.930	2.751	3.583	149.11	11.99	149.11
	C52 C33 C55)	10 atoms						
	H49 π (Cg: C3: C20 C54 C42)	5 C11 C13 10 atoms	0.931	2.908	3.682	141.48	2.12	141.48
	H62 π (Cg [·] C1)	1 C35 C42	0 930	2 850	3 529	130.80	7 62	130.80
	C54 H49 C20 C1	3) 10 atoms	0.500	2.000	5.022	100.00	,	100.00
СНО	H805/015	H8O5	0.931	2.471	3.278	145.20		
	(Bifurcated)	H8O15	0.931	2.491	3.321	148.66		
	H21O	15	0.931	2.519	3.205	130.71		
	Н59С	06	0.929	2.586	3.378	143.48		
			6					
СНπ	H6π (Cg: C70) C69 C32	0.932	2.850	3.485	126.40	1.01	126.40
	C27 C28 (229)						
	H15π(Cg: C46	5 C37 C38	0.929	2.779	3.663	159.22	13.45	159.22
	C43 C44 ((45)	0.021	2 060	2 170	116.60	0.70	116 60
	$\Pi 21\pi(Cg. N4)$	$C_{39}C_{00}$	0.931	2.900	5.478	110.02	0.70	110.02
	$H34\pi(Cg:C1)$	(18013)	0.929	5.419	4.140	130.23	40.08	130.23
	H42π(Cg: C50	5 C57 C48	0928	3.758	4.443	132.99	44.91	132.99
	C49 C54 (C55)	0.021	2.020	2.000	157.00	12.10	157.00
	H55π(Cg: C66 C59 C68 (267)	0.931	2.928	3.806	157.80	13.12	157.80
	H61 π(Cg: C50	5 C57 C48	0.931	3.190	3.826	126.42	5.44	126.42
ππ	C49 C54 (255)			3 586			
<i>nn</i>	(Cg1· C7 C8 C9	C10 C11	•••	•••	5.500	•••	•••	•••
	C12. Cg2: C46 C	37 C38 C43						
	C44 C4	5)						
СНО	Н70С)3	0.930		3.084	124.51		
			7.DMS	0				
СНπ	H35π (Cg: 1	0 atoms)	0.930	2.561	3.488	173.99	3.32	173.99
	H39π (Cg: 1	0 atoms)	0.930	2.773	3.589	148.33	4.47	148.33
	H40π (Cg: 1	0 atoms)	0.931	2.800	3.444	127.26	2.78	127.26
СНО	H12/H64O2	H12O2	0.930	2.580	3.452	156.33		
	(Bifurcated)	H64O2	0.930	2 595	3 427	149 16		
	H32/H45 O3	H32_O3	0.930	2.393	3 3 3 7	151 39		•••
	(Bifurcated)	H45_03	0.930	2.491	3 107	120.81		•••
	(2.1.4.04.04.0)	7	0.930	2.520	2 206	142.61		•••
	ПЭ2С	U10 04	0.930	2.311	5.500 2.559	145.05	•••	•••
	(Difurceted)	П1904	0.971	2.655	3.558	154.86		
		нова04	0.970	2.528	3.458	160.67		•••
— •	Н57С	94	0.929	2.588	3.398	145.90		
0S	O9S	1	···· 7 N/D4	···	3.277	•••		•••
CII –	$\mathbf{H} 1 0 = 0$	C1 CO	/.ND	2.240	2.012	100.52	25 45	100.52
CHπ	ΗΙδπ (Cg:	(1-(6)	0.949	5.240	5.915	129.55	23.43	129.55

Figure S17. Protocol for CH... π interactions: d is the distance between the phenyl ring centroid (Cg) and the H atom; V is the vector normal to the plane of phenyl ring; α is the angle between the d and V vector, and β is the C–H...Cg angle.

For instance, the intermolecular interactions H61... π , H49... π (5) and H39... π (7.DMSO) lead to the formation of infinite 1D helical chain with helical pitch 28.963Å and 28.822 Å, respectively (which is equivalent to its unit cell parameter c). A representative view is provided in Figure S18a for 7.DMSO (Other views are depicted in Supporting Information, Figure S19-S21). The presence of *N*-naphthyl substituents in **6** alters the packing pattern and indeed forms, infinite 1D saw shape molecular stacking along the *b*-axis involving H6... π or H15... π and π ... π interactions. (Figure S18b) Mutually all the noncovalent interactions in 5, 6 and 7.DMSO lead to the formation of an infinite 3D molecular network consisting of voids occupied by corresponding solvent molecules, that are translated in infinite channels as shown in Figure S18c-e. In case of 7.CH₂Cl₂, solvent molecules played a crucial role in directing the crystal packing patterns of this molecule. For instance, π ... π and Cl...O interactions lead to an attractive helical arrangement along c axis, however, all these noncovalent interactions mutually leads to the formation of a 3D infinite supramolecular assembly consisting relatively smaller voids occupied by CH₂Cl₂ molecules, compared to 7.DMSO. Moreover, the two closing π ... π interactions involve half of the linker moiety of two molecules which oriented adjacent molecule in anti fashion. Notably, differential stereoelectronic factors associated with CH₂Cl₂ molecules have efficiently tuned the noncovalent interactions, involving CH₂Cl₂ molecules in CH...O interactions that together with effective CH... π , π ... π interactions have resulted into the formation of unique 3D interlocked undulated architecture as illustrated in Figure S18f.

(a)

(b)

Figure S18. (a) CH... π interactions forming infinite 1D helical chain, (b) packing pattern illustrating an infinite 1D saw shape molecular stacking, (c) 3D supramolecular assembly formed through noncovalent interactions capped stick and spacefill model (H are omitted for clarity) a view along the *b*-axis (2.2.2) for **7.DMSO** (d) Formation of 3D infinite interlocked undulated architecture through noncovalent interaction in **7**.CH₂Cl₂.

Other packing patterns:

5: Interestingly, the H61... π (Cg: C49 C59 C57 C52 C33 C55) interactions can be used to generate 1D infinite helicate along *b*-axis whereas H49... π (Cg: C35 C11 C13 C20 C54 C42) interactions forms another helicate along *c*-axis, with helical pitch 28.963 Å (Figure S19). The H24... π (Cg: C22 C60 C53 C46 C63 C44) interactions are associated with two CH...O interactions viz. H8...O5/O15 and H21...O15, which are closing contact, hence forms macrocyclic assembly.

Figure S19. (a) and (b) Formation of helicates along b- and c-axis through noncovalent interactions.

6: The H21... π (Cg: N4 C59 C60) donor-acceptor interactions are closing contact which holds two molecules exactly in *anti* manner and are associated with H61... π interaction, which leads to the formation of two molecular finite '*S*-shaped' self-assembly. Additionally, 1D wavy arrangement along *c*-axis and 1D stacking along *a*-axis have been formed through H42... π and H42... π interactions, respectively. (Figure S20 a-b) Four double helical macrocyclic molecular units are situated at four diagonal corners of the unit cell of **6** whereas dimenstionality is extended predominantly through CH... π and CH...O interactions to the formation of infinite 3D architecture consisting of number of voids.

Figure S20. (a-b) Formation of 1D wavy arrangement along *c*-axis and 1D stacking along *a*-axis have been formed through H42... π and H42... π interactions, respectively.

7.2*CH*₂*Cl*₂: The π ... π interactions align molecules in *anti* and lead to 1D packing (Figure 21a) and Cl...O interactions in cooperation with CH...O interactions, pack the molecules in *ac* plane *via* dichloromethane (Figure 21b). Notably, distinct crystal packing pattern is observed when DMSO is switched over to CH₂Cl₂, for instance smaller voids are generated due to crystal packing which are occupied by CH₂Cl₂ molecules. Hydrogen of CH₂Cl₂ molecules are also involved in CH...O interactions with both the chelated phenolic oxygens of either side.

(a)

Figure S21. (a) View of the layer formed by the π ... π -stacking interactions (b) Molecular packing in *ac* plane *via* dichloromethane molecules. (c) Helical chain-like packing along the c-axis. (d) Molecular packing view along *a*-axis (2.2.2) in complex 7.CH₂Cl₂, H atoms and solvent molecules were omitted for clarity.

UV-visible absorption and Emission. The UV-visible absorption (10^{-4} M) and emission (10^{-4} M) property of ligand precursors (L¹, L²), potassium salt of xanthate ligands (K₂xan¹, K₂xan²), binuclear xanthate macrocyclic complexes (1-4) as well as binuclear *N*,*O*-Schiff base macrocyclic complexes (5-8) were investigated at room temperature from DMSO solution

samples. The differential electronic spectra of **1-8** shown in Figure S22a-b clearly suggest alterations in the structural features of the molecular framework. The shorter absorption band \sim 315 nm is assigned to $\pi \rightarrow \pi^*$ (phenyl) transitions and the longer absorption band \sim 360 nm is assigned to $n \rightarrow \pi^*$ (imine) transitions while the absorption band in the range of 390-490 nm could be attributable to the intraligand charge transfer in respective compounds.

It appears that the λ_{max} value for all the compounds arises due to phenyl $\pi \rightarrow \pi^*$ transitions do not show any significant change with the change in the functionality. As expected, the band due to imine $n \rightarrow \pi^*$ transitions appeared in ligand precursors L¹, L² remains unaffected in corresponding xanthate ligands K₂xan¹, K₂xan² and bimetallic xanthate complexes 1-4, however a distinguishable blue shift of 10-15 nm in **5-8** as compared to the similar transitions observed in L^1 and L^2 , clearly underlines the participation of imine moiety in complex formation. Further ligand precursors L^1 , L^2 display strong bands due to charge transfer transitions at 395 and 480 nm respectively, predominantly arises due to the presence of phenolic hydroxyl moiety present in conjugation with imine (-CH=N-) functionality. These bands significantly shifted towards higher wavelength ca 444 nm and 490 nm upon formation of K₂xan¹, K₂xan² ligands respectively. These bands undergo substantial blue shifts upon complexation with metal ions. For instance a hefty blue shift of 39 nm (1), 57 nm (2) and 29 nm (4) has been observed. In contrast a minor red shift of approx 8 nm in the charge transfer transition band (444 nm) of K_2xan^1 ligand is observed upon comlexation with Cu^{II} ion. In addition to these transitions, all complexes 1-8 exhibit a weak d-d transition bands in the visible region of the spectrum. The cobalt complexes 1-2 and 5-6 displayed a weak absorption band in the range of 531- 565sh nm suggesting distorted tetrahedral geometry around the Co^{II} centers whereas copper complexes 3-4 and 7-8 displayed a weak band in the range of 670- 690 nm suggesting distorted square planar / tetrahedral geometry around the Cu^{II} centers.

Figure S22. UV-visible absorption spectra of Schiff base precursors, xanthate salts, binuclear xanthate complexes and binuclear Schiff base complexes at room temperature in 10^{-4} M DMSO solution: (a) L¹, K₂xan¹, 1, 3, 5 and 7; (b) L², K₂xan², 2, 4, 6 and 8.

Figure S23. Fluorescence spectra of Schiff base precursors, xanthate salts, binuclear xanthate complexes and binuclear Schiff base complexes at room temperature in 10^{-4} M DMSO solution: (a) L¹, K₂xan¹, 1, 3, 5 and 7; (a) L², K₂xan², 2, 4, 6 and 8.

The fluorescence spectra of ligand precursors (L^{1}, L^{2}) , potassium salt of xanthate ligands $(\mathbf{K}_2 \mathbf{xan}^1, \mathbf{K}_2 \mathbf{xan}^2)$, binuclear xanthate macrocyclic complexes (1-4) as well as binuclear N,O-Schiff base macrocyclic complexes (5-8) shown in Figure S23, clearly suggests that L¹ and K_2xan^1 display very weak intensity band at 432, 513 and 520 nm at λ_{ex} 360 and 318 nm respectively however L² and K₂xan² display very strong bands 519 and 532 nm at λ_{ex} 318 and 497 nm respectively with a significant Stokes shift. Besides the Co^{II} N, O-Schiff base complex 5 is found to be highly fluorescent, display a high sharp intensity 410 nm at λ_{ex} 314 with a Stokes shift of ≈ 138 nm. As copper (II) is generally a fluorescence quencher, all the Cu^{II} complexes display no significant fluorescence properties. The observed trend of fluorescence spectra and concomitant bathochromic shifts of intramolecular charge-transfer emissions by coordination compounds were previously observed in dithiocarbamate⁴, dialkoxo-bridged⁵ and Salen-type⁶ complexes. The appearance of more number of bands upon excitation of a single wavelength as well as high fluorescence behaviour of the complexes may be attributed to the reduction of photoinduced electron transfer process on complex formation.⁷ In conclusion the results of emission study suggest that the emission intensities are dependent on not only on the extended conjugation but also on rigidity in the molecule, which suppresses the distortion of the molecular framework and the concomitant nonradioactive decay process.

Theoretical Investigations. All calculations were performed with the Gaussian 03 program suite.⁸ The geometry for all the model compounds discussed herein was fully optimized (Figure S24) by density functional theory at the DFT B3LYP/lanl2dz level. Such type of basis set has been used with good success in a number of studies involving similar species, having good agreement with experimental results.⁹ Molecular orbitals were generated using GaussView 3.0 program.

Figure S24. An optimized geometry for the minimum energy conformation at B3LYP/lanl2dz level for 1 (a), 2 (b), Kxan-1 (c), 5 (d), 7 (e), L_1 (f).

The outcomes of theoretical study are in good agreement with the experimental data. The flexibility associated with the linker along with the desired orientations of xanthate moieties of K_2xan^1 is essentially the key factor involved in the macrocyclization process, leading to binuclear complexes **1-4**. It appears that the optimized structures adopt a unique orientation to diminish the steric and electronic factors associated with them. For instance, boat shaped macrocyclic architectures are obtained as a lower energy conformation in case of binuclear xanthate complexes **1** and **3**, whereas double helical macrocyclic architectures are obtained for binulear *N*, *O*-Schiff base complexes 5 and 7. These architectures are exemplified in Figure S25-S26.

(a)

(b)

Figure S25. Complex 1 forming boat shaped macrocyclic architecture represented by capped sticks (a) and spacefill (b) models.

Figure S26. Complex **5** forming double helical macrocyclic architecture represented by capped sticks (a) and spacefill (b) models.

An optimized geometry of complexes 1, 5 and 7 suggests distorted tetrahedral coordination sphere at both the metal centers however complex 3 adopts distorted square planar geometry around both the Cu^{II} centers. The geometrical parameters of the binuclear *N*, *O*-Schiff base macrocyclic complexes 5 and 7 are well compared with their experimental parameters obtained from single crystal X-ray study (Table S3) and these validate the optimized electronic structural models of compounds under investigation. The small difference between the geometrical parameters obtained theoretically and from X-ray crystallography of compound 5 is probably emerged due to the presence of large number of non-covalent interactions offered by the spacer moiety intending an extra stability to the macrocyclic architecture.

Entry	Selected	Bond Le	ngth (Å)	Selected	Bond Le	ngth (Å)
	Bond	Theoretical	X-ray	Bond	Geometrical	X-ray
5	O–Co	1.917, 1.921	1.890, 1.900, 1.906, 1.884	O-Co-N	94.08, 94.54	94.62, 95.29, 93.46, 91.71
	N–Co	2.047, 2.043	1.991, 1.953, 1.972, 1.985	О-Со-О	117.61	94.24, 91.07
	N–C (imine)	1.312, 1.309	1.284, 1.288, 1.301	N–Co–N	123.70	101.00, 101.29
	O–C (ether)	1.387, 1.381	1.381, 1.396, 1.384, 1.379	C–C–N	128.16, 128.43	127.14, 127.68, 126.35, 126.88
	Co ₁ –Co ₂	11.259	11.750	C–N–Co	118.64, 118.65, 119.32	122.70, 121.61, 122.85, 121.95
				С-О-Со	124.93, 126.49	126.75, 127.47, 124.63, 128.86
				C–O–C (ether)	118.88	115.42, 117.92
7	O–Cu	1.930	1.888, 1.893	O-Cu-N	93.33	94.11-94.92
	N–Cu	2.029	1.957, 1.976	N–Cu–N	104.34	98.12
	N–C	1.421	1.299-1.434	O–Cu–O	96.22	92.80
				N–Cu–O	139.48-139.53	145.29-145.89
				C-C-N	128.20	125.87-126.82
				C–N–Cu	122.10-122.11	121.48-122.76
				C–O–Cu	128.84-128.85	123.16-127.69
				C-O-C	118.32	115.91

Table S5. Selected structural parameters obtained from theoretical investigations and X-ray study for1, 3, 5 and 7.

Sr.	Entry	Energy (10 ⁶ Kcal/mol)	HOMO-LUMO Band gap (eV)	Theoretical λ_{max} value (experimental λ_{max} value) nm
1	1	-3.9543	3.4645	358 (366)
2	3	-4. 0184473	3.3941	365 (380)
3	5	-1.8599	3.5688	347 (349)
4	7	-1.9238968	3.6303	342 (359)

Table S6. Computational calculation data for complex 1, 3, 5, 7

Frontier molecular orbital analysis. The character of the frontier orbitals and the HOMO–LUMO energy gap greatly contribute to the photo-physical properties of the complexes and thus analysis of frontier molecular orbitals need prime consideration for prediction of the possible reactivity of the molecule.¹⁰

Figure S27. Comparison of the frontier molecular orbitals derived from DFT calculation at the B3LYP/LAN2DZ level; for (a) L_1 and Kxan-1, (b) Complexes 1, 3, 5 and 7.

Due to the effective conjugation, HOMO and LUMO in L^1 are delocalized over all the phenyl rings whereas HOMO of K_2xan^1 is mainly delocalized over phenyl rings adjacent to ethereal

oxygen and to a little extent to the xanthate moieties. Expectedly, LUMO of K_2xan^1 is mainly localized over a xanthate moiety and potassium attached to xanthate as illustrated in Figure S26a. The electron density in the HOMO for binuclear xanthate complexes 1 and 3 is predominantly delocalized over the phenyl moieties adjacent ethereal with oxygen, while metal chelated xanthate moieties are mainly contributed for LUMO as shown in Figure S27b. The transformation of the binuclear xanthate complexes to their corresponding binuclear N.O-Schiff base analogues can be explained by the localization of LUMO at metal chelated xanthate moiety in complexes 1 and 3 which emphasizes the vulnerability of xanthate moiety under nucleophilic conditions. The HOMO for 5 and 7 is predominantly delocalized over spacer moiety; the π orbitals of two peripheral phenyl moieties of linker unit are commonly contributing to the high extent for the delocalization of the HOMO. However, the LUMO in 5 is mainly delocalized over the length of the one of the ligand portion and it is delocalized over peripheral phenyl moieties in 7 with minor contribution by the phenyl moieties attached to ethereal oxygen as shown in Figure S27b. On the other hand, for both the compounds the contribution from the metal atom in their HOMOs and LUMOs is extremely negligible. Thus, frontier molecular analysis suggests that the chelated xanthate moiety can preferentially react with nucleophilic species and all the complex molecules can show an efficient CH- π and π - π donor-acceptor ability.

Furthermore, the significant decrease in the energy difference between HOMO-LUMO is observed upon reaction of L₁ (3.7829 eV) with CS₂ leading to the Kxan-1(3.2543 eV), due to higher electron density and extended conjugation. We have also found that the energies of HOMO and LUMO of 1 and 3 are lower than that of 5 and 7, energy difference between HOMOs is smaller but LUMOs are greatly differentiated by energy. The energy difference between HOMO-LUMO for xanthate complexes (3.4646 eV for 1 and 3.3941 eV for 3) is significantly lower compared to their corresponding Schiff base complexes (3.5688 eV for 5 and 3.6303 eV for 7), could be due to the presence of flexible skeletal structures of the xanthate ligand. Additionally, this study also revealed the greater contribution of copper towards decrease of the HOMO-LUMO energy difference in xanthate complexes in spite of identical molecular framework except metal centers, however reverse trend is observed in Schiff base complexes. The lower energies of HOMO in copper containing complexes (3 and 7) over their cobalt centered congeners (1 and 5) also suggest their superior stability. Interestingly, the HOMO-LUMO energy gap values for the entire investigated compound are in the range of 3.38-3.79 eV which reveals the possible semiconducting properties of the compounds¹¹ and increases the potential applicability of this class of compounds towards semiconducting materials.

The electrostatic potential (ESP) of molecules are widely used as a powerful tool for exploring the properties and locating potential sites within the molecules for the interactions with other moieties and thus it provides insights into molecular association. For instance, the surface property of drug molecule reveals the potential sites of interactions with biomolecules which is useful to estimate the mode of action.¹²

Figure 28. Graphical representation of electron density from total SCF density (isoval= 0.0004; mapped with ESP) for **a-f:** Complex 1, 3, K_2xan^1 , 5, 7 and L^1 respectively (Red color indicates negative potential whereas blue color indicates negative potential)

The localization of slight negative potential around -OH in L¹ and very high positive potential around potassium centers and quite negative potential around sulfur atoms in K₂xan¹ can be clearly seen in Figure S28. Furthermore, the localization of low positive potential at aromatic hydrogen atoms moderately negative potential around N/O/S in macrocyclic complex 1 (a), **3** (b), **5** (d) and **7** (e) could be clearly revealed from mapping of electrostatic potential surface (Figure S28). This has indeed generated a scope for the use of these macrocyclic complexes with variable cavity size and tuneable electronic environment as ditopic receptors to interact with suitable guest species (*vide supra*). Gejji et al. have depicted the exploitation of molecular electrostatic potential from density functional calculations to understand the host-guest interactions.¹³ In this context, the surface potential of binuclear xanthate macrocyclic complexes **1** and its Schiff base analogue **5** clearly explain the sensing ability of various metal ions using fluorescence spectroscopy (*vide supra*).

Cartesian Coordinates for Optimized Geometries:

Table S7. Cartesian coordinates for optimized geometry of L¹.

Atom Type		coordinates (Angstroms)	
	X	Ŷ	Z
C1	-3.7405	-0.4649	-0.0461
C2	-2.6694	0.1024	-0.7552
C3	-1.4117	-0.4908	-0.7533
C4	-1.2009	-1.6536	-0.005
C5	-2.2468	-2.2178	0.7284
C6	-3.5068	-1.6287	0.7073
H7	-2.8466	1.0061	-1.3295
H8	-0.5987	-0.0557	-1.3237
Н9	-2.0535	-3.1081	1.3172
H10	-4.3027	-2.053	1.3111
O11	0	-2.3351	5.00E-04
C12	1.2008	-1.6536	0.0057
C13	2.2464	-2.2174	-0.7286
C14	1.4121	-0.4913	0.7547
C15	3.5064	-1.6283	-0.7078
H16	2.0527	-3.1073	-1.3179
C17	2.6698	0.1018	0.7564
H18	0.5993	-0.0567	1.3257
C19	3.7405	-0.465	0.0464
H20	4.302	-2.0523	-1.3122

H21	2.8473	1.0051	1.3312
N22	-4.9824	0.1937	-0.0983
N23	4.9824	0.1935	0.0986
C24	6.0977	-0.4558	0.0063
H25	6.1152	-1.5513	-0.0585
C26	7.3825	0.2127	1.00E-03
C27	8.5684	-0.5434	-0.0913
C28	7.4751	1.6311	0.0906
C29	9.8128	0.066	-0.1
H30	8.489	-1.626	-0.1574
C31	8.7397	2.2401	0.0813
C32	9.888	1.4652	-0.0131
H33	10.7169	-0.5291	-0.1726
H34	8.7878	3.3216	0.1499
H35	10.8585	1.9533	-0.0189
O36	6.3868	2.4066	0.186
H37	5.5945	1.8004	0.1838
C38	-6.0977	-0.4556	-0.0068
H39	-6.1151	-1.5513	0.0571
C40	-7.3825	0.2127	-0.0015
C41	-7.4751	1.6312	-0.0905
C42	-8.5684	-0.5434	0.09
C43	-8.7397	2.2402	-0.0814
C44	-9.8128	0.066	0.0986
H45	-8.489	-1.6261	0.1558
C46	-9.888	1.4651	0.0122
H47	-8.7878	3.3217	-0.1495
H48	-10.7169	-0.5292	0.1707
H49	-10.8584	1.9533	0.0178
O50	-6.3868	2.4067	-0.1852
H51	-5.5944	1.8004	-0.1828

Table S8. Cartesian coordinates for optimized geometry of K_2xan^1 .

Atom Type	0	Coordinates (Angstroms)	
•• •	X	Ŷ	Z
C1	-2.7085	-0.3078	1.9865
C2	-3.9232	-0.3429	1.2809
C3	-3.9036	-0.6868	-0.083
C4	-2.6963	-0.9545	-0.7245
C5	-1.4947	-0.8801	-0.0174
C6	-1.4988	-0.5579	1.3436
07	-0.3375	-1.2341	-0.6911
C8	0.8113	-0.4818	-0.5512
C9	0.8039	0.906	-0.3694
C10	2.0109	1.5963	-0.3189
C11	3.2418	0.9264	-0.4215
C12	3.227	-0.4658	-0.6305
C13	2.024	-1.1624	-0.6929
N14	-5.1217	-0.167	2.0009
N15	4.4105	1.7035	-0.3612
C16	-6.0743	0.6061	1.634
C17	5.4884	1.2097	0.1309
C18	-6.1365	1.6125	0.545
C19	6.7423	1.9706	0.158
C20	-5.0451	2.4193	0.1834
C21	-5.1785	3.4139	-0.7825
C22	-6.4103	3.6213	-1.4099
C23	-7.5101	2.837	-1.0649
C24	-7.3643	1.8489	-0.0969
C25	7.9204	1.396	0.6628
C26	9.1157	2.1077	0.7176
C27	9.1532	3.4191	0.249
C28	7.9954	4.0126	-0.2687
C29	6.8063	3.2951	-0.3115
O30	-8.4997	1.1594	0.3189
O31	7.8697	0.126	1.2375
C32	-8.77	-0.1227	-0.0829
C33	8.1993	-1.0066	0.5455
S34	-10.0991	-0.7902	0.7496
S35	8.648	-0.8784	-1.0994
H36	-2.7279	-0.0825	3.0488
H37	-4.8395	-0.7411	-0.6321

H38	-2.6707	-1.2216	-1.7767
H39	-0.5644	-0.5226	1.8947
H40	-0.1378	1.4374	-0.2827
H41	2.0231	2.6745	-0.1904
H42	4.1628	-0.9995	-0.7686
H43	2.0039	-2.2348	-0.8622
H44	-6.9877	0.5383	2.2304
H45	5.5237	0.2074	0.5714
H46	-4.0919	2.2696	0.6788
H47	-4.324	4.0329	-1.0404
H48	-6.5165	4.3958	-2.1643
H49	-8.4799	2.9777	-1.5306
H50	9.9972	1.6253	1.1266
H51	10.084	3.9783	0.2897
H52	8.0244	5.0361	-0.6322
H53	5.8952	3.7355	-0.7029
S54	8.0708	-2.4072	1.5145
855	-7.8095	-0.8336	-1.3073
K56	8.8309	-3.9498	-1.0312
K57	-9.019	-3.4763	-0.2867

T 11 CO	α · ·	1. 1	C	·· · 1	4	C 1
I ahle NY	Cartesian	coordinates	tor o	nfimized	geometry	Int
	Curtosiun	coordinates	101 0	pumizea	Scomen	

Atom Type	Coordinates (Angstroms)				
	X	Y	Z		
C1	1.592	-6.1422	0.376		
C2	2.7961	-6.8636	0.2955		
C3	2,995	-7.7113	-0.8088		
C4	2.0488	-7.7993	-1.822		
C5	0.8636	-7.0599	-1.7327		
C6	0.6306	-6.2356	-0.6271		
07	-0.0098	-7.174	-2.7936		
C8	-1.3414	-6.8326	-2.6265		
C9	-2.1611	-7 5362	-1 7373		
C10	-3.5114	-7.2172	-1.6536		
C11	-4 0558	-6 1768	-2.4274		
C12	-3 2229	-5 5015	-3 3372		
C13	-1 8718	-5 8285	-3 4362		
N14	3 8014	-6 8249	1 2769		
N15	-5 4257	-5 9053	-2 2725		
C16	4 0067	-5 7477	1 9418		
C17	-5 8563	-4 7012	-2 3583		
C18	1 9944	-5 6912	3.0275		
C19	-7 2895	-4 3941	-2 2558		
C20	5 7226	-6 8277	3 1236		
C21	6 6384	-6.7634	4 4674		
C22	6 8/32	-5 5607	5 1 5 3 5		
C22	6 13/6	-4.4178	1 7849		
C24	5 2376	4 4000	3 7266		
C25	7 7576	3 0731	2 281		
C25	9 1089	2 7542	2.201		
C27	-10.038	-2.7342	-2.2088		
C28	9 6052	5 1164	-2.0301		
C28	-9.0032 8.2506	5 4143	-2.0449		
030	6 8321	2 0296	2.1327		
C31	-6.4163	-2.0290	-2.4097		
\$32	6 8671	1 5004	-1.400		
\$32	5 2726	-1.5004	1 0227		
H3A	1 3878	5 5233	-1.9257		
H25	3 01/1	-5.5255 8 2860	0.8502		
H36	2 2035	-0.2009	-0.8392		
1150	0.2042	-0.44	-2.0843		
H137 H28	-0.2945	-5.0754 8 331	-0.3474		
1138	-1./301	-0.551	-1.1311		
П39 Ц40	-4.1085	-7.757	-0.9/8/		
П40 Ц41	-5.0595	-4./5/8	-3.96/4		
П41 Ц42	-1.2213	-3.3190	-4.1400		
П42	5.4393	-4.8210	1./540		
П45	-5.1619	-3.6492	-2.3010		
П44 Ц45	5.5411	-1.133	2.88/2		
H40	/.1904	-/.000	4./308		
H40	/.5504	-5.5111	5.9/01		
H4 /	0.2090	-3.4/48	5.3037		
H48	-9.41/2	-1./149	-2.2504		

H50 -10.3299 -5.9198 $-1.$ H51 -7.8954 -6.4391 $-2.$ Co52 -5.5005 0.4793 $0.$ S53 -3.7786 0.9756 $2.$ S54 -6.2874 2.4932 $1.$ C55 -4.8226 2.2902 $2.$ O56 4.4598 -3.3691 $3.$ C57 4.9516 -2.3603 $2.$ S58 3.8483 -1.1022 $2.$ S59 6.5734 -2.2916 $2.$ Co60 5.7798 -0.2045 $1.$ S61 6.6621 2.0157 $1.$ S62 6.2118 0.5231 $-1.$ C63 6.7562 1.9203 $-0.$ O64 7.2552 2.9927 $-0.$ C65 7.5742 2.9967 $-2.$ C66 6.8074 3.7914 $-3.$ C67 8.7151 2.3204 $-2.$ C68 5.6035 4.4983 $-2.$ C69 7.2318 3.8816 $-4.$ C70 9.106 2.4211 $-3.$ H71 9.2859 1.7366 $-1.$.0261
H51 -7.8954 -6.4391 $-2.$ Co52 -5.5005 0.4793 $0.$ S53 -3.7786 0.9756 $2.$ S54 -6.2874 2.4932 $1.$ C55 -4.8226 2.2902 $2.$ O56 4.4598 -3.3691 $3.$ C57 4.9516 -2.3603 $2.$ S58 3.8483 -1.1022 $2.$ S59 6.5734 -2.2916 $2.$ Co60 5.7798 -0.2045 $1.$ S61 6.6621 2.0157 $1.$ S62 6.2118 0.5231 $-1.$ C63 6.7562 1.9203 $-0.$ O64 7.2552 2.9927 $-0.$ C65 7.5742 2.9967 $-2.$ C66 6.8074 3.7914 $-3.$ C67 8.7151 2.3204 $-2.$ C68 5.6035 4.4983 $-2.$ C69 7.2318 3.8816 $-4.$ C70 9.106 2.4211 $-3.$ H71 9.2859 1.7366 $-1.$.9511
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1094
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4379
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3873
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3989
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6805
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3097
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1304
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1967
S62 6.2118 0.5231 -1. C63 6.7562 1.9203 -0. O64 7.2552 2.9927 -0. C65 7.5742 2.9967 -2. C66 6.8074 3.7914 -3. C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1. N72 5.04 5.272 5.272	4641
C63 6.7562 1.9203 -0. O64 7.2552 2.9927 -0. C65 7.5742 2.9967 -2. C66 6.8074 3.7914 -3. C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1. N72 5.04 5.2070 2.270	.0752
O64 7.2552 2.9927 -0. C65 7.5742 2.9967 -2. C66 6.8074 3.7914 -3. C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1.	.2437
C65 7.5742 2.9967 -2. C66 6.8074 3.7914 -3. C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1.	.8571
C66 6.8074 3.7914 -3. C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1.	.2302
C67 8.7151 2.3204 -2. C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1.	.0925
C68 5.6035 4.4983 -2. C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1. N72 5.04 5.2670 2.27	.6494
C69 7.2318 3.8816 -4. C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1. N72 5.04 5.2670 2.270	.6293
C70 9.106 2.4211 -3. H71 9.2859 1.7366 -1.	.4309
H71 9.2859 1.7366 -1.	.9832
NTO E 04 E 2070 C	.9351
IN/2 3.04 5.38/9 -3	.359
Н73 5.2235 4.234 -1.	.6354
C74 8.363 3.2055 -4.	.8728
H75 6.6428 4.495 -5.	.1044
H76 9.9921 1.8936 -4.	.3235
C77 3.8381 5.9849 -2.	.9456
H78 8.6699 3.2869 -5.	.9114
C/9 3.6/45 7.364 -3.	.1655
C80 2.7693 5.2618 -2.	.3899
C81 2.5063 8.0088 -2.	./844
H82 4.4893 /.9188 -3.	.6201
1.5/4/ 5.895 -2	2.04/
1.84 2.8530 4.1848 $-2.$.2748
1.4310 1.2703 $-2.$	0226
100 $2.5/6/$ $9.0/04$ $-2.$.9520 6614
0.7444 0.5142 -1.	0792
0.5024 7.5936 -1.	0632
-0.0329 7.0095 -1.00	3634
C91 -0.3643 -0.9799 -0.	1517
(92 - 2.9865 - 7.7356 - 0)	4559
H93 -2 1619 8 4959 -2	3025
C94 -1 4004 6 6889 1	0383
H95 0,6593 6,7314 (0.41
C96 -2.7262 7.0519 0.1	7443
H97 -4.0061 8.0403 -0.	.6699
H98 -1.1712 6.2202 1.	9911
N99 -3.8026 6.8228 1.4	6166
C100 -3.8964 5.7107 2.1	2459
C101 -4.9652 5.4837 3.1	2303
H102 -3.1945 4.8849 2.4	0789
C103 -5.7617 6.5441 3.	6993
C104 -5.2273 4.2092 3.	7505
C105 -6.7567 6.3298 4.	6464
H106 -5.569 7.5334 3.	2981
C107 -6.2072 3.9751 4	.708
O108 -4.4189 3.1255 3.1	3461
C109 -6.9779 5.0461 5.	1578
H110 -7.3571 7.1642 4.	9967
H111 -6.3574 2.9687 5.	0846
H112 -7.7476 4.8773 5.	

Table S10. Cartesian coordinates for optimized geometry of 3.

	1 0			
Atom Type	Coordinates (Angstroms)			
	Х	Y	Z	
C1	6.299	-4.0024	1.1682	
C2	7.5646	-3.7081	0.6232	
C3	8.1278	-4.613	-0.2928	
C4	7.4341	-5.7484	-0.6979	

C5	6.1723	-6.0118	-0.1623
C6	5.6079	-5.1463	0.7819
07	5.5602	-7.1985	-0.5191
C8	4.2686	-7.2002	-1.0019
C9	3.5694	-8.4079	-0.8975
C10	2.2942	-8.5158	-1.4378
C11	1.6749	-7.4144	-2.0549
C12	2.3992	-6.2132	-2.1625
C13	3.688	-6.1038	-1.6477
N14	8.3433	-2.5901	0.9612
N15	0.3861	-7.5989	-2.5819
C16	7.8114	-1.5045	1.3883
C17	-0.4401	-6.6185	-2.6145
C18	8.6497	-0.3609	1.7748
C19	-1.7579	-6.7467	-3.2505
C20	10.0496	-0.4046	1.6314
C21	10.8441	0.6736	2.0003
C22	10.2598	1.827	2.5369
C23	8.8777	1.8974	2.6971
C24	8.0974	0.8137	2.3044
C25	-2.6624	-5.6747	-3.2678
C26	-3.8947	-5.742	-3.9083
C27	-4.2615	-6.9329	-4.5337
C28	-3.392	-8.0297	-4.5189
C29	-2.1549	-7.9339	-3.8922
O30	-2.2424	-4.4564	-2.6959
C31	-2.7586	-3.9977	-1.5543
S32	-4.0203	-4.7703	-0.6989
\$33	-2.0796	-2.5542	-0.947
H34	5.8683	-3.3559	1.9272
H35	9.1141	-4.3937	-0.6893
H36	/.8591	-6.4443	-1.414
H3/	4.642	-5.381/	1.21//
H38	4.04/3	-9.2501	-0.40/4
H39	1.7449	-9.4501	-1.3/65
H40	1.9705	-5.3693	-2.695
H41 1142	4.2453	-5.1806	-1./034
H42 1142	0.7279	-1.3085	1.4/85
П45 Ц44	-0.2038	-5.0417	-2.1780
П44 Ц45	10.4822	-1.5108	1.221/
H45	10 8777	2 6682	2 8366
1140 H47	8 4034	2.0082	2.8300
H48	A 5477	4 8761	3 0136
H40	-5 2228	-7.001	-5.9130
H50	-3 6795	-8 9559	-5.0079
H51	-1 46	-8.7669	-3 8832
852	-3 3311	-1 1691	2 4194
853	-5 7491	-2.8443	2.1092
C54	-4.9231	-1.5669	2.8865
055	6.712	0.8457	2.5609
C56	5.8944	1.686	1.9226
S57	4.3042	1.8001	2.5307
S58	6.3525	2.6074	0.5575
S59	2.1402	4.7396	1.3932
S60	3.8473	5.0545	-0.9952
C61	2.5426	5.5941	-0.0292
O62	1.7825	6.6542	-0.3054
C63	2.0075	7.5135	-1.3975
C64	0.9339	7.721	-2.2774
C65	3.2068	8.2117	-1.5049
C66	-0.3554	7.0373	-2.0955
C67	1.1246	8.6464	-3.3199
C68	3.3653	9.1209	-2.5495
H69	3.9962	8.048	-0.7807
N70	-1.3638	7.3273	-2.8326
H71	-0.4142	6.3075	-1.2807
C72	2.3248	9.3322	-3.4609
H73	0.2972	8.8098	-4.002
H74	4.2992	9.6668	-2.6451
C75	-2.5906	6.6672	-2.6559
H76	2.4505	10.0411	-4.274
C77	-3.7592	7.4104	-2.8963

C78	-2.7174	5.3141	-2.2909
C79	-5.0151	6.8467	-2.7058
H80	-3.6578	8.4455	-3.2068
C81	-3.9729	4.7333	-2.1313
H82	-1.8289	4.7011	-2.1696
C83	-5.1232	5.5092	-2.3143
H84	-5.9214	7.422	-2.8657
H85	-4.0614	3.6832	-1.8729
O86	-6.4001	4.9932	-2.2229
C87	-6.7486	4.1122	-1.2204
C88	-7.8153	3.2502	-1.4989
C89	-6.1582	4.1124	0.0475
C90	-8.2788	2.3818	-0.518
H91	-8.273	3.2842	-2.4824
C92	-6.6041	3.2134	1.013
H93	-5.3633	4.8124	0.2804
C94	-7.6569	2.322	0.741
H95	-9.1099	1.7132	-0.7194
H96	-6.1578	3.2316	2.0031
N97	-8.1447	1.3949	1.6791
C98	-7.3121	0.7845	2.4393
C99	-7.7538	-0.1405	3.492
H100	-6.2298	0.9214	2.3342
C101	-9.1039	-0.246	3.8681
C102	-6.8321	-0.9489	4.1746
C103	-9.4976	-1.1113	4.8837
H104	-9.8242	0.3726	3.343
C105	-7.2016	-1.8093	5.2001
O106	-5.4627	-0.8254	3.858
C107	-8.5484	-1.8896	5.5554
H108	-10.5456	-1.1757	5.1616
H109	-6.4437	-2.4024	5.7009
H110	-8.8536	-2.559	6.3541
Cu111	-3.7481	-2.8653	0.7598
Cu112	4.1098	3.4785	0.8162

_

Table S11. Cartesian coordinates for optimized geometry of 5.

Atom Type		Coordinates (Angstroms)	
	Х	Y	Z
C1	3.4423	-0.2961	2.585
C2	3.5252	0.9957	2.0399
C3	2.4316	1.8673	2.1848
C4	1.2772	1.4546	2.8449
C5	1.1947	0.1541	3.3453
C6	2.2806	-0.716	3.2317
07	0.0448	-0.2883	3.9816
C8	-1.0952	-0.4963	3.2303
C9	-1.1314	-0.4174	1.8346
C10	-2.3217	-0.6717	1.1583
C11	-3.4802	-1.0317	1.8545
C12	-3.4378	-1.0967	3.2554
C13	-2.2548	-0.826	3.9399
N14	4.6733	1.3578	1.2879
N15	-4.6563	-1.3395	1.1058
C16	5.1171	2.5902	1.368
C17	-5.2101	-2.5099	1.2963
C18	6.1451	3.2154	0.5983
C19	-6.3339	-3.0794	0.6133
C20	6.4711	4.5579	0.9414
C21	7.4154	5.2792	0.2463
C22	8.0722	4.667	-0.8454
C23	7.7837	3.3702	-1.2161
C24	6.8217	2.5895	-0.5124
C25	-6.9874	-2.4651	-0.5153
C26	-8.0376	-3.195	-1.1394
C27	-8.4312	-4.4345	-0.6758
C28	-7.7953	-5.0348	0.4325
C29	-6.7631	-4.362	1.05
O30	6.5911	1.3735	-0.9054
O31	-6.655	-1.3012	-0.998
C32	-2.4316	1.8664	-2.1853
C33	-3.5253	0.995	-2.0403

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C34	-3.4427	-0.2968	-2.5851
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C35	-2.281	-0.7171	-3.2316
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C36	-1.1949	0.1528	-3.3454
038 -0.0451 -0.29 -3.9815 C39 1.095 -0.4976 -3.302 C40 1.1311 -0.4185 -1.8345 C41 2.3314 -0.6725 -1.18542 C43 3.4377 -1.0976 -2.2517 C44 2.2447 -0.8272 -3.9397 N45 -4.6734 1.3574 -1.2839 C44 2.2447 -0.8272 -3.9397 N45 -4.6734 1.3574 -1.2857 C47 -5.117 2.5899 -1.3666 C48 5.2101 -2.5102 -1.1957 C50 6.3339 -3.0795 -0.6126 C51 -6.4705 4.558 -0.9421 C53 -8.0715 4.6677 0.8446 C54 -7.7844 3.6777 0.8446 C55 -6.8216 2.8899 0.5118 C55 -6.8216 2.8947 -0.4314 C	C37	-1.2772	1.4534	-2.8453
C39 1.095 -0.4976 -3.232 C40 1.1311 -0.4185 -1.8345 C41 2.3214 -0.6725 -1.181 C42 3.48 -10324 -18325 C43 3.477 -0.9722 -3937 C44 2.25477 -0.82722 -39387 C44 2.25477 -0.82722 -39387 N46 4.6561 -1.3399 -1.10348 C47 -5.117 2.5899 -1.36866 C48 5.2101 -2.5102 -1.29897 C50 6.3339 -3.0795 -0.6126 C51 -6.4705 4.558 -0.9422 C52 -7.4145 5.2796 -0.2471 C53 -8.077 2.1444 0.6757 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.5899 0.5118 C56 6.9744 2.4649 0.5158 C57 8.0377 -3.1946 1.1401 C58 <td< td=""><td>O38</td><td>-0.0451</td><td>-0.29</td><td>-3.9815</td></td<>	O38	-0.0451	-0.29	-3.9815
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C39	1.095	-0.4976	-3.2302
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C40	1.1311	-0.4185	-1.8345
C42 3.48 -1.0324 -1.8542 C43 3.4377 -1.0976 -3.2551 C44 2.2547 -0.8272 -3.9397 N45 -4.6734 1.3574 -1.2839 N46 4.6661 -1.3399 -1.1054 C47 -5.117 2.5899 -1.3686 C48 5.2101 -2.5102 -1.2957 C49 -6.1448 3.2155 -0.5926 C50 6.3339 -3.0795 -0.6126 C51 -6.4705 4.558 -0.9422 C52 -7.4145 5.2796 -0.2411 C53 -8.0715 4.6677 0.8446 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.5899 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.334 0.677 C58 7.7957 -5.0347 -0.4314	C41	2.3214	-0.6725	-1.1581
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42	3.48	-1.0324	-1.8542
C44 2.2347 -0.8272 -3.3937 N45 -4.6734 1.3574 -1.2883 N46 4.6561 -1.3399 -1.1054 C47 -5.117 2.8899 -1.8866 C48 5.2101 -2.5102 -1.2957 C49 -6.1448 3.2155 -0.59899 C50 6.3339 -3.07955 -0.6126 C51 -6.4705 4.558 -0.9421 C52 -7.4145 5.27966 -0.2471 C53 -8.0715 4.6677 0.8446 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.8999 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.434 0.6767 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.8942 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6033 0.0741 H69 -4.3396 -1.3414 3.8995 H70 -2.2177 -0.9666 2.1171 H72 4.6522 3.2376	C43	3 4377	-1.0976	-3 2551
N45 4.6734 1.3574 -1.2883 N46 4.6561 -1.3399 -1.1054 C47 -5.117 2.5899 -1.3686 C48 5.2101 -2.5102 -1.2883 C49 -6.1448 3.2155 -0.5989 C50 6.3339 -3.0795 -0.6126 C51 -6.4705 4.558 -0.9422 C52 -7.4145 5.2796 -0.2471 C53 -8.0715 4.6677 0.8446 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.5899 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.1946 1.101 C58 8.4314 -4.434 0.676 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6448 -1.3009 0.9844 <td< td=""><td>C44</td><td>2.2547</td><td>-0.8272</td><td>-3 9397</td></td<>	C44	2.2547	-0.8272	-3 9397
N464.6561-1.3399-1.1054C47-5.1172.5899-1.1054C485.2101-2.5102-1.2957C49-6.14483.2155-0.5989C506.3339-3.0795-0.6126C51-6.47054.558-0.9421C52-7.41455.2796-0.2471C53-8.07154.66770.8446C54-7.78343.37091.2155C55-6.82162.88990.5118C566.9874-2.46490.5159C578.0377-3.19461.1401C588.4314-4.4340.6767C597.7957-5.0347-0.4314C606.7633-4.5622-1.049O61-6.59131.37380.9049O626.6548-1.30090.9984H634.2927-0.9662.4894H642.46472.85541.7362H650.42592.12162.9398H662.2022-1.71773.6419H67-0.2379-0.16851.2753H68-2.3474-0.63030.0741H69-4.3396-1.31413.8095H70-2.2137-0.86865.0236H714.65023.23762.1171H758.8185.2279-1.1443H77-8.5227-2.7287-1.9491H78-9.2445-4.9567-1.1744H79-8.1109-6.0110.787H80	N45	-4 6734	1 3574	-1 2883
C47 -5.117 2.5899 -1.3866 C48 5.2101 -2.5102 -1.3866 C48 5.2101 -2.5102 -1.3866 C49 -6.1448 3.2155 -0.5989 C50 6.3339 -3.0795 -0.6126 C51 -6.4705 4.558 -0.9422 C52 -7.4145 5.2796 -0.2471 C53 -8.0715 4.6677 0.8446 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.2899 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8995 H70 -2.2137 -0.8886 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5234 H77 -8.2277 -2.72877 -1.9	N46	4 6561	-1 3399	-1 1054
C485.210 -2.5102 -1.2957 C49-6.14483.2155 -0.3989 C50-6.3339 -3.0795 -0.6126 C51-6.47054.558 -0.9422 C52-7.41455.2796 -0.2471 C53-8.07154.66770.8446C54-7.78343.37091.2155C55-6.82162.38990.5118C566.9874-2.46490.5159C578.0377-3.19461.1401C588.4314-4.4340.6767C597.7957-5.0347-0.4314C606.7633-4.3622-1.049O61-6.59131.37380.9049O626.6548-1.30090.9984H634.2927-0.9662.4894H642.46472.85541.7362H650.42592.12162.9398H662.2022-1.71773.6419H67-0.2379-0.16851.2753H68-2.3474-0.63030.0741H70-2.2137-0.86865.0236H714.65023.23762.1171H72-4.7459-3.16122.0447H735.94855.01391.7803H747.65026.30190.787H758.8185.2279-1.174H758.8185.2279-1.174H768.28532.8947-2.0532H77-8.5227-2.7287-1.9914H78 <td>C47</td> <td>-5 117</td> <td>2 5899</td> <td>-1 3686</td>	C47	-5 117	2 5899	-1 3686
C40L213L2155-0.5989C506.3339-3.0795-0.6126C51-6.47054.558-0.9422C52-7.41455.2796-0.2471C53-8.07154.66770.8446C54-7.78343.37091.2155C55-6.82162.58990.5118C566.9874-2.46490.5159C578.0377-3.19461.1401C588.4314-4.4340.6767C597.7957-5.0347-0.4314C606.7633-4.3622-1.049O61-6.59131.37380.9049O626.6548-1.30090.9984H634.2927-0.9662.4894H642.46472.85541.7362H650.42592.12162.9398H662.0222-1.71773.6419H67-0.2379-0.16851.2753H68-2.3474-0.63030.0741H69+4.3396-1.34143.8095H70-2.2137-0.88665.0236H714.65023.23762.1171H72+4.7459-3.16122.0447H758.8185.2279-1.4037H768.28532.8947-2.0532H77-8.5216-4.81291.8984H81-2.46452.8546-1.7369H82+4.9567-1.174H768.28532.8947-2.0532H77-8.109-6.011	C48	5 2101	-2 5102	-1 2957
C50C3330C30795C6126C51-6.47054.558-0.9422C52-7.41455.2796-0.2471C53-8.07154.66770.8446C54-7.78343.37091.2155C55-6.82162.58990.5118C566.9874-2.46490.5159C578.0377-3.19461.1401C588.4314-4.4340.6767C597.7957-5.0347-0.4314C606.7633-4.3622-1.049O61-6.59131.37380.9049O626.6548-1.30090.9984H634.2927-0.9662.4894H642.46472.85541.7362H650.42592.12162.9398H662.0202-1.71773.6419H67-0.2379-0.16851.2753H68-2.3474-0.63030.0741H69-4.3366-1.34143.8095H70-2.2137-0.88665.0236H714.65023.23762.1171H72-4.7459-3.16122.0447H735.94835.01391.7803H747.65026.30090.5274H758.8185.2279-1.4037H768.28332.8947-2.0532H77-8.521-2.7287-1.9914H78-9.2445-4.9567-1.1744H79-8.1109-6.0110.787H862.3471 <td>C49</td> <td>-6 1448</td> <td>3 2155</td> <td>-0 5989</td>	C49	-6 1448	3 2155	-0 5989
C50C50C50C510C510C512C51-647054.558-0.9422C52-7.41455.2796-0.2471C53-8.07154.66770.8446C54-7.78343.37091.2155C55-6.82162.58990.5118C566.9874-2.46490.5159C578.0377-3.19461.1401C588.4314-4.4340.6767C597.7957-5.0347-0.4314C606.7633-4.3622-1.049O61-6.59131.37380.9049O626.6548-1.30090.9984H634.2927-0.9662.4894H642.46472.85541.7362H650.42592.12162.9398H662.2022-1.71773.6419H67-0.2379-0.16851.2753H68-2.3474-0.63030.0741H69-4.3396-1.34143.8095H70-2.2137-0.86865.0236H714.65023.23762.1171H72-4.7459-3.16122.0447H735.94855.01391.7803H747.65026.30090.5274H758.8185.2277-2.7287H768.28532.8947-2.0532H77-8.4129-1.8944H81-2.46452.8546H71H862.3471-0.6309H83-2.028-1.719 <td>C50</td> <td>6 3 3 3 9</td> <td>-3 0795</td> <td>-0.6126</td>	C50	6 3 3 3 9	-3 0795	-0.6126
C51 -0.7425 -0.2471 C52 -7.4145 5.27966 -0.2471 C53 -80715 4.6677 0.8446 C54 -7.7834 3.3709 1.2155 C55 -6.8216 2.5899 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.434 0.6767 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7562 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3966 -1.3414 3.8095 H70 -2.2137 -0.86866 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 <	C51	6 4705	4 558	0.0120
C:2 $1,747.5$ $3,27.9$ $0,27.1$ C:3 $-8,0715$ $4,6677$ $0,8446$ C:54 $-7,7834$ $3,3709$ $1,2155$ C:55 $-6,8216$ $2,5899$ $0,5118$ C:56 $6,9874$ $-2,4649$ $0,51159$ C:57 $8,0377$ $-3,1946$ $1,1401$ C:58 $8,4314$ $-4,434$ $0,6767$ C:59 $7,7957$ $-5,0347$ $-0,4314$ C:60 $6,7633$ $-4,3622$ $-1,049$ O:61 $-6,5913$ $1,3738$ $0,9049$ O:62 $6,6548$ $-1,3009$ $0,9984$ H:63 $4,2297$ $-0,966$ $2,4894$ H:64 $2,4647$ $2,8554$ $1,7362$ H:65 $0,2222$ $-1,7177$ $3,6419$ H:67 $-0,2379$ $-0,1685$ $1,2753$ H:68 $-2,3474$ $-0,6303$ $0,0741$ H:69 $-4,3396$ $-1,3414$ $3,8095$ H:70 $-2,2137$ $-0,8666$ $5,0236$ H:71 $4,6502$ $3,2376$ $2,1171$ H:72 $-4,7459$ $-3,1612$ $2,0447$ H:75 $8,818$ $5,2279$ $-1,4037$ H:76 $8,2853$ $2,8947$ $-2,0532$ H:77 $-8,5227$ $-2,7287$ $-1,9914$ H:78 $-9,2445$ $-4,9567$ $-1,1744$ H:79 $-8,1109$ $-6,011$ $0,787$ H:80 $-6,2516$ $-4,8129$ $1,8984$ H:81 $-2,4645$ $2,8546$ $-1,7369$ H:82 $-2,028$	C51 C52	7 4145	5 2796	-0.9422
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C52 C53	2 0715	5.2790	-0.24/1
C34 -1.7834 3.509 1.2133 C55 -6.8216 2.5899 0.5118 C56 6.9874 -2.4649 0.5159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.434 0.6767 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2823 2.8947 -2.0532 H77 -8.5227 -7.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -0.87 -2.24894 H81 -2.2028 -1.719 -3.6417 <	C53	-8.0715	4.0077	1 2155
C33 -0.8210 2.399 0.3118 C56 6.9874 2.24649 0.5159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.434 0.6767 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.1818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -2.0237 -1.9914 $+179$ </td <td>C54</td> <td>-7.7834</td> <td>3.5709</td> <td>1.2133</td>	C54	-7.7834	3.5709	1.2133
C30 $0.58/4$ -2.4649 0.3159 C57 8.0377 -3.1946 1.1401 C58 8.4314 -4.434 0.6767 C59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.3938 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.6303 0.0741 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2465 -2.1792 -2.4894 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H81 -2.4645 2.8546 -1.7369 H82 -2.028 -1.719 -3.6417 H84 -0.2276 -1.719 -3.6	C33	-0.8210	2.3699	0.5118
C 57 8.0577 -5.0347 -1.1401 CS8 8.4314 -4.434 0.6767 C 59 7.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -2.0228 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.6168 -1	C50 C57	0.98/4	-2.4049	0.5159
C58 84314 -4434 $00/0'$ C597.7957 -5.0347 -0.4314 C60 6.7633 -4.3622 -1.049 O61 -6.5913 1.3738 0.9049 O62 6.6548 -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2277 -2.7287 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -2.928 -1.719 -3.6417 H84 -0.4258 2.1202 -2.4903 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.739 <td>057</td> <td>8.0377</td> <td>-3.1946</td> <td>1.1401</td>	057	8.0377	-3.1946	1.1401
C.59 $1,757$ $-5,0347$ -0.4314 C60 $6,7633$ $-4,3622$ -1.049 O61 $-6,5913$ 1.3738 0.9049 O62 $6,6548$ -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 4.2932 -0.9667 -2.4894 H83 -2.0218 -1.2119 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -1.1719 -3.6417 H90 4.746 -3.1618 -2	C58 C59	8.4314	-4.434	0.6/6/
C60 $6,7033$ $-4,3022$ $-1,049$ O61 $-6,5913$ 1.3738 0.9049 O62 $6,6548$ -1.3009 0.9984 H63 4.2927 -0.966 2.4894 H64 2.4647 2.8554 1.7362 H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.7369 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -2.3276 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.758 2.9274 H90 4.746 -3.1618 $-$	C59	1.1957	-5.0347	-0.4314
061-6.59131.37380.9049 062 6.6548-1.30090.9984 $H63$ 4.2927-0.9662.4894 $H64$ 2.46472.85541.7362 $H65$ 0.42592.12162.9398 $H66$ 2.0222-1.71773.6419 $H67$ -0.2379-0.16851.2753 $H68$ -2.3474-0.63030.0741 $H69$ -4.3396-1.34143.8095 $H70$ -2.2137-0.86865.0236 $H71$ 4.65023.23762.1171 $H72$ -4.7459-3.16122.0447 $H73$ 5.94855.01391.7803 $H74$ 7.65026.30090.5274 $H75$ 8.8185.2279-1.4037 $H76$ 8.28532.8947-2.0532 $H77$ -8.5227-2.7287-1.9914 $H78$ -9.2445-4.9567-1.1744 $H79$ -8.1109-6.0110.787 $H80$ -6.2516-4.81291.8984 $H81$ -2.46452.8546-1.7369 $H82$ -4.2932-0.9667-2.4894 $H83$ -2.2028-1.719-3.6417 $H84$ -0.42582.1202-2.9403 $H85$ 0.2376-0.1698-1.2752 $H84$ 2.04553.2371-2.1178 $H90$ 4.746-3.1618-2.044 $H91$ -5.94785.0138-1.7812 $H90$ 4.746-3.1618-2.044 $H91$ -5.9478	C60	6.7633	-4.3622	-1.049
062 6.6548 -1.3009 0.9984 $H63$ 4.2927 -0.966 2.4894 $H64$ 2.4647 2.8554 1.7362 $H65$ 0.4259 2.1216 2.9398 $H66$ 2.2022 -1.7177 3.6419 $H67$ -0.2379 -0.1685 1.2753 $H68$ -2.3474 -0.6303 0.0741 $H69$ -4.3396 -1.3414 3.8095 $H70$ -2.2137 -0.8686 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.253 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H84$ -0.4258 2.1202 -2.4894 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.877 -5.0234 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044	061	-6.5913	1.3/38	0.9049
H63 4.2927 -0.966 2.4894 $H64$ 2.4647 2.8554 1.7362 $H65$ 0.4259 2.1216 2.9398 $H66$ 2.2022 -1.7177 3.6419 $H67$ -0.2379 -0.1685 1.2753 $H68$ -2.3474 -0.6303 0.0741 $H69$ -4.3396 -1.3414 3.8095 $H70$ -2.2137 -0.8686 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 <td< td=""><td>062</td><td>6.6548</td><td>-1.3009</td><td>0.9984</td></td<>	062	6.6548	-1.3009	0.9984
h64 $2.464/$ 2.8554 1.7362 $H65$ 0.4259 2.1216 2.9398 $H66$ 2.2022 -1.7177 3.6419 $H67$ -0.2379 -0.1685 1.2733 $H68$ -2.3474 -0.6303 0.0741 $H69$ -4.3396 -1.3414 3.8095 $H70$ -2.2137 -0.8686 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.3014 -0.5283 $H93$ -8.8171 5.2289 1.4029 <	H63	4.2927	-0.966	2.4894
H65 0.4259 2.1216 2.9398 H66 2.2022 -1.7177 3.6419 H67 -0.2379 -0.1685 1.2753 H68 -2.3474 -0.6303 0.0741 H69 -4.3396 -1.3414 3.8095 H70 -2.2137 -0.8686 5.0236 H71 4.6502 3.2376 2.1171 H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.014 $-$	H64	2.4647	2.8554	1.7362
h66 2.2022 -1.7177 3.6419 $h67$ -0.2379 -0.1685 1.2753 $h68$ -2.3474 -0.6303 0.0741 $h69$ -4.3396 -1.3414 3.8095 $h70$ -2.2137 -0.8686 5.0236 $h71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7154 $H92$ 7.6491 6.3014 -0.5283 <	H65	0.4259	2.1216	2.9398
H67 -0.2379 -0.1685 1.2753 $H68$ -2.3474 -0.6303 0.0741 $H69$ -4.3396 -1.3414 3.8095 $H70$ -2.2137 -0.8686 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.0208 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.3014 -0.5283 $H93$ -8.8171 5.2289 1.4029 $H94$ -8.285 2.8955 2.0527	H66	2.2022	-1.7177	3.6419
H68 -2.3474 -0.6303 0.0741 $H69$ -4.3396 -1.3414 3.8095 $H70$ -2.2137 -0.6866 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.3014 -0.5283 $H93$ -8.8171 5.2289 1.4029 $H94$ -8.255 2.8955 2.0527 $H95$ 8.5228 -2.728 1.992 <tr< td=""><td>H67</td><td>-0.2379</td><td>-0.1685</td><td>1.2753</td></tr<>	H67	-0.2379	-0.1685	1.2753
H69-4.3396-1.34143.8095 $H70$ -2.2137-0.86865.0236 $H71$ 4.65023.23762.1171 $H72$ -4.7459-3.16122.0447 $H73$ 5.94855.01391.7803 $H74$ 7.65026.30090.5274 $H75$ 8.8185.2279-1.4037 $H76$ 8.28532.8947-2.0532 $H77$ -8.5227-2.7287-1.9914 $H78$ -9.2445-4.9567-1.1744 $H79$ -8.1109-6.0110.787 $H80$ -6.2516-4.81291.8984 $H81$ -2.46452.8546-1.7369 $H82$ -4.2932-0.9667-2.4894 $H83$ -2.2028-1.719-3.6417 $H84$ -0.42582.1202-2.9403 $H85$ 0.2376-0.1698-1.2752 $H86$ 2.3471-0.6309-0.0739 $H87$ 4.3395-1.3422-3.8092 $H88$ 2.2136-0.87-5.0234 $H89$ -4.653.2371-2.1178 $H90$ 4.746-3.1618-2.044 $H91$ -5.94785.0138-1.7812 $H92$ -7.64916.3014-0.5283 $H93$ -8.81715.22891.4029 $H94$ -8.2852.89552.0527 $H95$ 8.5228-2.7281.992 $H96$ 9.2448-4.9561.1754 $H97$ 8.1113-6.0109-0.7858 $H98$ 6.2519<	H68	-2.3474	-0.6303	0.0741
H70 -2.2137 -0.8886 5.0236 $H71$ 4.6502 3.2376 2.1171 $H72$ -4.7459 -3.1612 2.0447 $H73$ 5.9485 5.0139 1.7803 $H74$ 7.6502 6.3009 0.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.3014 -0.5283 $H93$ -8.8171 5.2289 1.4029 $H94$ -8.285 2.8955 2.0527 $H95$ 8.5228 -2.728 1.992 $H96$ 9.2448 -4.956 1.1754 $H97$ 8.1113 -6.0109 -0.7858 <	H69	-4.3396	-1.3414	3.8095
H71 $4,6502$ 3.2376 2.1171 H72 $-4,7459$ -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8466 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 4.8133 -1.8974 Co99 5.629 0.0259 0.061	H70	-2.2137	-0.8686	5.0236
H72 -4.7459 -3.1612 2.0447 H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.019 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.061	H71	4.6502	3.2376	2.1171
H73 5.9485 5.0139 1.7803 H74 7.6502 6.3009 0.5274 H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 -0.0615	H72	-4.7459	-3.1612	2.0447
H747.65026.30090.5274 $H75$ 8.818 5.2279 -1.4037 $H76$ 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.014 -0.5283 $H93$ -8.8171 5.2289 1.4029 $H94$ -8.285 2.8955 2.0527 $H95$ 8.5228 -2.728 1.992 $H96$ 9.2448 -4.956 1.1754 $H97$ 8.1113 -6.0109 -0.7858 $H98$ 6.2519 -4.8133 -1.8974 $Co99$ 5.629 0.0259 0.0615 $Co100$ -5.6291 0.0259 -0.0615 </td <td>H73</td> <td>5.9485</td> <td>5.0139</td> <td>1.7803</td>	H73	5.9485	5.0139	1.7803
H75 8.818 5.2279 -1.4037 H76 8.2853 2.8947 -2.0532 H77 -8.5227 -2.7287 -1.9914 H78 -9.2445 -4.9567 -1.1744 H79 -8.1109 -6.011 0.787 H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 -0.0615 Co100 -5.6291 0.0259 -0.0615	H74	7.6502	6.3009	0.5274
H76 8.2853 2.8947 -2.0532 $H77$ -8.5227 -2.7287 -1.9914 $H78$ -9.2445 -4.9567 -1.1744 $H79$ -8.1109 -6.011 0.787 $H80$ -6.2516 -4.8129 1.8984 $H81$ -2.4645 2.8546 -1.7369 $H82$ -4.2932 -0.9667 -2.4894 $H83$ -2.2028 -1.719 -3.6417 $H84$ -0.4258 2.1202 -2.9403 $H85$ 0.2376 -0.1698 -1.2752 $H86$ 2.3471 -0.6309 -0.0739 $H87$ 4.3395 -1.3422 -3.8092 $H88$ 2.2136 -0.87 -5.0234 $H89$ -4.65 3.2371 -2.1178 $H90$ 4.746 -3.1618 -2.044 $H91$ -5.9478 5.0138 -1.7812 $H92$ -7.6491 6.3014 -0.5283 $H93$ -8.8171 5.2289 1.4029 $H94$ -8.285 2.8955 2.0527 $H95$ 8.5228 -2.728 1.992 $H96$ 9.2448 -4.956 1.1754 $H97$ 8.1113 -6.0109 -0.7858 $H98$ 6.2519 -4.8133 -1.8974 $Co99$ 5.629 0.0259 -0.0615 $Co100$ -5.6291 0.0259 -0.0615	H75	8.818	5.2279	-1.4037
H77-8.5227-2.7287-1.9914 $H78$ -9.2445-4.9567-1.1744 $H79$ -8.1109-6.0110.787 $H80$ -6.2516-4.81291.8984 $H81$ -2.46452.8546-1.7369 $H82$ -4.2932-0.9667-2.4894 $H83$ -2.2028-1.719-3.6417 $H84$ -0.42582.1202-2.9403 $H85$ 0.2376-0.1698-1.2752 $H86$ 2.3471-0.6309-0.0739 $H87$ 4.3395-1.3422-3.8092 $H88$ 2.2136-0.87-5.0234 $H89$ -4.653.2371-2.1178 $H90$ 4.746-3.1618-2.044 $H91$ -5.94785.0138-1.7812 $H92$ -7.64916.3014-0.5283 $H93$ -8.81715.22891.4029 $H94$ -8.2852.89552.0527 $H95$ 8.5228-2.7281.992 $H96$ 9.2448-4.9561.1754 $H97$ 8.1113-6.0109-0.7858 $H98$ 6.2519-4.8133-1.8974 $Co99$ 5.6290.02590.0615 $Co100$ -5.62910.0259-0.0615	H76	8.2853	2.8947	-2.0532
H78-9.2445-4.9567-1.1744 $H79$ -8.1109-6.0110.787 $H80$ -6.2516-4.81291.8984 $H81$ -2.46452.8546-1.7369 $H82$ -4.2932-0.9667-2.4894 $H83$ -2.2028-1.719-3.6417 $H84$ -0.42582.1202-2.9403 $H85$ 0.2376-0.1698-1.2752 $H86$ 2.3471-0.6309-0.0739 $H87$ 4.3395-1.3422-3.8092 $H88$ 2.2136-0.87-5.0234 $H89$ -4.653.2371-2.1178 $H90$ 4.746-3.1618-2.044 $H91$ -5.94785.0138-1.7812 $H92$ -7.64916.3014-0.5283 $H93$ -8.81715.22891.4029 $H94$ -8.2852.89552.0527 $H95$ 8.5228-2.7281.992 $H96$ 9.2448-4.9561.1754 $H97$ 8.1113-6.0109-0.7858 $H98$ 6.2519-4.8133-1.8974 $Co99$ 5.6290.02590.0615 $Co100$ -5.62910.0259-0.0615	H77	-8.5227	-2.7287	-1.9914
H79-8.1109-6.0110.787 $H80$ -6.2516-4.81291.8984 $H81$ -2.46452.8546-1.7369 $H82$ -4.2932-0.9667-2.4894 $H83$ -2.2028-1.719-3.6417 $H84$ -0.42582.1202-2.9403 $H85$ 0.2376-0.1698-1.2752 $H86$ 2.3471-0.6309-0.0739 $H87$ 4.3395-1.3422-3.8092 $H88$ 2.2136-0.87-5.0234 $H89$ -4.653.2371-2.1178 $H90$ 4.746-3.1618-2.044 $H91$ -5.94785.0138-1.7812 $H92$ -7.64916.3014-0.5283 $H93$ -8.81715.22891.4029 $H94$ -8.2852.89552.0527 $H95$ 8.5228-2.7281.992 $H96$ 9.2448-4.9561.1754 $H97$ 8.1113-6.0109-0.7858 $H98$ 6.2519-4.8133-1.8974 $Co99$ 5.6290.02590.0615 $Co100$ -5.62910.0259-0.0615	H78	-9.2445	-4.9567	-1.1744
H80 -6.2516 -4.8129 1.8984 H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H79	-8.1109	-6.011	0.787
H81 -2.4645 2.8546 -1.7369 H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H80	-6.2516	-4.8129	1.8984
H82 -4.2932 -0.9667 -2.4894 H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H81	-2.4645	2.8546	-1.7369
H83 -2.2028 -1.719 -3.6417 H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H82	-4.2932	-0.9667	-2.4894
H84 -0.4258 2.1202 -2.9403 H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H83	-2.2028	-1.719	-3.6417
H85 0.2376 -0.1698 -1.2752 H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H84	-0.4258	2.1202	-2.9403
H86 2.3471 -0.6309 -0.0739 H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H85	0.2376	-0.1698	-1.2752
H87 4.3395 -1.3422 -3.8092 H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H86	2.3471	-0.6309	-0.0739
H88 2.2136 -0.87 -5.0234 H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H87	4.3395	-1.3422	-3.8092
H89 -4.65 3.2371 -2.1178 H90 4.746 -3.1618 -2.044 H91 -5.9478 5.0138 -1.7812 H92 -7.6491 6.3014 -0.5283 H93 -8.8171 5.2289 1.4029 H94 -8.285 2.8955 2.0527 H95 8.5228 -2.728 1.992 H96 9.2448 -4.956 1.1754 H97 8.1113 -6.0109 -0.7858 H98 6.2519 -4.8133 -1.8974 Co99 5.629 0.0259 0.0615 Co100 -5.6291 0.0259 -0.0615	H88	2.2136	-0.87	-5.0234
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H89	-4.65	3.2371	-2.1178
H91-5.94785.0138-1.7812H92-7.64916.3014-0.5283H93-8.81715.22891.4029H94-8.2852.89552.0527H958.5228-2.7281.992H969.2448-4.9561.1754H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H90	4.746	-3.1618	-2.044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H91	-5.9478	5.0138	-1.7812
H93-8.81715.22891.4029H94-8.2852.89552.0527H958.5228-2.7281.992H969.2448-4.9561.1754H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H92	-7.6491	6.3014	-0.5283
H94-8.2852.89552.0527H958.5228-2.7281.992H969.2448-4.9561.1754H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H93	-8.8171	5.2289	1.4029
H958.5228-2.7281.992H969.2448-4.9561.1754H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H94	-8.285	2.8955	2.0527
H969.2448-4.9561.1754H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H95	8.5228	-2.728	1.992
H978.1113-6.0109-0.7858H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H96	9.2448	-4.956	1.1754
H986.2519-4.8133-1.8974Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H97	8.1113	-6.0109	-0.7858
Co995.6290.02590.0615Co100-5.62910.0259-0.0615	H98	6.2519	-4.8133	-1.8974
Co100 -5.6291 0.0259 -0.0615	Co99	5.629	0.0259	0.0615
	Co100	-5.6291	0.0259	-0.0615

Tabl	le S12.	Cartesian	coord	inates	for o	optimized	geometr	y ot	7	
------	---------	-----------	-------	--------	-------	-----------	---------	------	---	--

Atom Type	Coordinates (Angstroms)			
	Х	Y	Z	
C1	-3.5249	0.1404	-2.347	

~ -

C2	-3 4959	1 0953	-1 3193
C3	-2.2642	1 6603	-0.9522
C4	-1 0909	1 29	-1 6036
C5	-1 1362	0 3408	-2.6278
C6	-2.3531	-0.2331	-3 0022
07	-7E-4	-0.0106	-3 3374
C8	1 1364	-0.3565	-2.6277
N9	-4 7088	1 4547	-0.6712
C10	2 3511	0.2218	-3 0023
C11	3 5242	-0.147	-2.3467
C12	3.4987	-1.1015	-1.3186
C13	2.2691	-1 671	-0.9513
C14	1.0946	-1.3055	-1.603
N15	4.7129	-1.4561	-0.6704
C16	-4.959	2.7272	-0.486
C17	4.968	-2.7276	-0.4849
C18	-6.0926	3.32	0.1419
C19	6.1039	-3.316	0.143
C20	-6.1358	4.7411	0.1952
C21	-7.1996	5.415	0.7505
C22	-8.2831	4.668	1.2698
C23	-8.2882	3.2905	1.228
C24	-7.1937	2.5564	0.6768
C25	7.2023	-2.5482	0.6774
C26	8.2996	-3.2781	1.2286
C27	8.2995	-4.6556	1.2708
C28	7.2187	-5.4067	0.752
C29	6.1523	-4.7369	0.1967
030	-7.2412	1.2656	0.687
031	7.2451	-1.2572	0.6873
C32	2.264	1.6631	0.952
033	3.4954	1.097	1.318/
C34 C25	3.5239	0.1421	2.3463
C35	2.552	-0.2300	3.0019
C30 C37	1.1555	0.3445	2.0278
038	2E 4	0.0061	3 3376
C39	-1 1372	-0.3531	2 6281
N40	4 7084	1 4556	0.6704
C41	-2 3522	0 2243	3 0028
C42	-3 5252	-0.1455	2.3475
C43	-3.499	-1.1	1.3194
C44	-2.2691	-1.6686	0.952
C45	-1.0947	-1.3021	1.6035
N46	-4.7131	-1.4555	0.6713
C47	4.9594	2.7279	0.485
C48	-4.9673	-2.7271	0.4859
C49	6.0931	3.3201	-0.1433
C50	-6.1028	-3.3163	-0.142
C51	6.1372	4.7411	-0.1967
C52	7.2012	5.4143	-0.7525
C53	8.2839	4.6665	-1.2723
C54	8.2882	3.289	-1.2305
C55	7.1935	2.5557	-0.6786
C56	-7.202	-2.5492	-0.6758
C57	-8.2989	-3.2797	-1.227
C58	-8.2978	-4.6572	-1.2695
C59	-7.2163	-5.4077	-0.7512
C60	-6.1502	-4./3/2	-0.196
061	7.2402	1.2648	-0.6888
062	-7.2458	-1.2582	-0.6854
поэ Н64	-4.4/39	-0.2939	-2.0392
H65	-2.2204	2.5755	-0.1333
H66	-0.1500	-0.9607	-1.3108
H67	2.365	0.949	-3 8078
H68	4 4736	0 2926	-2 639
H69	2.2338	-2.3857	-0 1342
H70	0.144	-1.7427	-1 3165
H71	-4.2271	3.4374	-0.8848
H72	4.2387	-3.4408	-0.8833
H73	-5.2965	5.2964	-0.2198
H74	-7.2132	6.4998	0.7837

H75	-9.1313	5.1906	1.706
H76	-9.1184	2.7126	1.6218
H77	9.1278	-2.6971	1.6221
H78	9.1498	-5.175	1.707
H79	7.2363	-6.4915	0.7855
H80	5.3149	-5.2954	-0.2179
H81	2.2265	2.3782	0.1354
H82	4.4746	-0.2949	2.6383
H83	2.3682	-0.9582	3.807
H84	0.1387	1.7282	1.3174
H85	-2.3666	0.9515	3.8083
H86	-4.4749	0.2935	2.6399
H87	-2.2334	-2.3832	0.1349
H88	-0.1438	-1.7385	1.3167
H89	4.228	3.4387	0.8838
H90	-4.2374	-3.4398	0.8841
H91	5.2984	5.2969	0.2187
H92	7.2155	6.499	-0.7858
H93	9.1322	5.1886	-1.709
H94	9.1178	2.7106	-1.6247
H95	-9.1275	-2.6992	-1.6201
H96	-9.1477	-5.1771	-1.7056
H97	-7.2331	-6.4924	-0.7849
H98	-5.3123	-5.2952	0.2184
Cu99	-5.9552	0.0016	4E-4
Cu100	5.9544	0.0017	1E-4

Figure S29. % Cytotoxicity observed for investigated compounds against HEP 3B (a) and IMR 32 (b) at different concentrations.

In analogy to the literature reports on antitumour activity of similar compounds, our hypothesis on binuclear Co^{II}/Cu^{II} xanthate complexes induce cytotoxicity might involve multiple mode of action leading to the cell death, can be explained by several previously observed effects of isostructural dithiocarbamate complexes and complexes derived from *N*, *O*- donor ligands. 1,1-dithio moieties are known to exert cytotoxicity through antiangio-genesis effects, inhibition of numerous metalloenzymes and NF-KB-related gene-expression and modulation of cellular

metabolism, which lead to tissue damage.¹⁴ The decomposition and metabolic products of a transition metal 1,1-dithio complexes in vivo, ca free 1,1-dithio moieties, CS₂ are reportedly able to arrest the cell proliferation.¹⁵ Dou and co-workers reported several studies concerning the cytotoxic activity of discrete, transition metal complexes, including complexes based on S, Nand/ or O- donor ligands.¹⁶ Electrochemical and stability data¹⁷ suggests that the most stable dithiocarbamate complexes proved to be most cytotoxic in vitro and also against the cisplatinresistant. Recent investigations highlights the electronic density analysis of different dithiocarbamate metal complexes to correlate their toxicity as well as the ability to inhibit proteasome and induce apoptosis in human cancer cells.¹⁸ It has appeared that the dithiocarbamate complexes holding higher electronic density over sulfur atom within the complex are more active against the JAMM domain of the 26S proteasome.¹⁸ Due to presence of almost similar structural and electronic features in dithiocarbamate and xanthate complexes, analogous mode of action for the antitumor activity could be expected for both of them.Beyond this, the possibility of transchelation reactions with physiological molecules and metabolic products of xanthate complexes could alter the intracellular metal constitutions which lead to the cytotoxic activity. Further, cobalt and copper complexes are also known to target DNA under physiological conditions via an oxidative pathway¹⁹ and induce cytotoxicity.²⁰

Moreover, several stereoelectronic parameter made available by DFT study are known to provide insight in the mechanisms related to membranes transportations, revealing possible interactions with biological macromolecules or intracellular receptors and thus provide a possible rationalization for the structure activity relationships (SARs) of these compounds. The stability and reactivity of the molecules towards possible biological receptors such as electron rich or electron deficient regions are reportedly depends on the frontier orbitals,²¹ as HOMO energy is closely related to susceptibility to electrophilic attack while LUMO energy is closely related to susceptibility to nucleophilic attack.

Compound	Еномо	HOMO-	IO- Dipole Charges on		IC ₅₀ valu	les
	(eV)	LUMO gap (eV)	moment (Debye)	chelated atoms — (S/N,O) and metal center	HEP 3B μM (1mL) ±SE	IMR 32 μM (1mL) ±SE
L ₁	-5.59	3.7829	3.4765	N,O - (0.568-0.600)	137.8±13.9	104.0±3.3
Kxan-1	-5.0127	3.2543	17.2480	S –(0.380-0.394), K (0.821-0.824)	17.8±2.9	23.2±1.4
1	-5.5524	3.4646	2.6945	S – (0.020-0.036), Co (0.052)	52.9±1.3	51.8±2.9
3	-5.5772	3.3941	1.1886	S (0.015-0.028), Cu –(0.103-0.109)	8.1±0.8	1.9±0.3
5	-5.4240	3.5688	0.4366	N - (0.566 - 0.571), O - (0.654 - 0.661), C = (0.740, 0.750)	69.7±3.6	99.7±6.6
7	-5.4801	3.6303	0.0139	N – (0.545), O – (0.606), Cu (0.607)	19.2±2.1	13.2±1.1

Table S13. Parameters obtained from the computational investigations and cytotoxic activity for model compounds.

Induction of Apoptosis study

Figure S30: Flow cytometry density plots of HEP 3B and IMR 32 upon treatment with K_2xan^1 , binuclear macrocyclic complexes 1, 3, 6 and 7.

Figure S31. Flow cytometry data revealing apoptotic/ necrotic/live cell population of HEP 3B and IMR 32 cells upon treatment of K_2xan^1 , binuclear macrocyclic complexes 1, 3, 6 and 7.

Thermogravimetric Analysis

The thermogravimetric analysis of bimetallic xanthate/ N,O-Schiff base macrocyclic complexes 1-8, were performed under N₂ atmosphere at a heating rate of 10 °C /min from room temperature to 550 °C. The thermal analysis data and corresponding thermogram are summarized in Table S12 and Figure S31, respectively. A single or multi stage mass loss for these compounds was observed with DTG and corresponding DTA curves which are ascribed to endothermic and/or exothermic elimination of molecular fragments due to the thermal degradation. The bimetallic xanthate macrocyclic complexes 1-4, exhibit an insignificant mass loss of $\sim 1\%$ in initial stage which could be assigned to the loss of solvent impurities. Further mass loss of 12.44, 8.07, 4.2 and 3.52 % observed in the second stage of degradation is attributed to the loss of CS_2 / SCO ligand fragments. The maximum rate of decomposition seen on DTG curves for 1-4 is 360.2, 442.3, 327.8 and 337.6 °C respectively. Contrarily, among bimetallic *N*,*O*-Schiff base complex **5-8**, complex **5** display an endothermic peak at 147.2 $^{\circ}$ C on DTA curve without mass loss suggesting phase changes occurring due to its melting. Further it exhibits a single stage degradation started at 200 °C and continues at 550 °C with maximum rate of decomposition observed at 269.8 °C on DTG curve. Other complexes 6-8 showed two stages of degradation involving the loss of naphthyl/ CH₂Cl₂ fragments in the first stage followed by a continuous mass loss with a maximum rate of degradation at 467.5, 373.9 and 358.3 °C observed on corresponding DTG curves. It may be noted that the thermogravimetric study of complex 7 has been performed with the crystals obtained from CH₂Cl₂/hexane solvent mixture. The association of two CH₂Cl₂ molecules with the crystals is indeed confirmed by its thermogram, disclosing a mass loss of 14.8% at 212 °C corresponding to 2CH₂Cl₂ molecules (calc. 16.5%). This is consistent with the results of single crystal X-ray analysis of 7.

Table S14. Thermogravimetric analysis of binuclear xanthate/ *N,O*-Schiff base macrocyclic complexes **1-8**.

Entry	DTA (°C)	DTG (°C)	Significant Mass loss	Inference
	(µV)	(µg/min)	% (temp range °C)	
1	188.5 (8.21)	188.1 (45.2) 360.2 (20.3)	1.22 % (upto 100) 12.44 % (100-250)	1 st stage: Insignificant mass loss of solvent impurities. 2 nd stage: Loss of 2CS ₂ molecules (calc. 12.3 %).
			22.71 % (250-550) 36.37 % (50-550)	 3rd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 188.1 °C on DTG curve.
2		442.3 (62.2)	1.49 % (upto 100) 8.07 % (100-350) 23.43 % (350-550) 32.99 % (100-550)	 1st stage: Insignificant mass loss of solvent impurities. 2nd stage: Loss of 2SCO fragment (calc. 8.35 %). 3rd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 442.3 °C on

				DTG curve.
3	205.2 (2.57) 298.7 (2.42)	327.8 (145.4)	0.5 % (upto 100) 4.2 % (100-250) 25.4 % (250-550) 30.1 % (50-550)	 1st stage: Insignificant mass loss of solvent impurities. 2nd stage: Loss of SCO fragment (calc. 4.8 %). 3rd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 327.8 °C on DTG curve.
4	264.2 (3.32) 303.5 (4.46) 329.8 (2.84) 362.8 (-1.66)	337.6 (154.0) 353.4 (132.4)	3.52 % (50-100) 35.68 % (100-550) 39.20 %(50-550)	 1st stage: Loss of SCO (calc. 4.1 %). 2nd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 337.6 °C on DTG curve.
5	147.2 (25.8)	269.8 (104.7)	47.8 % (200-550)	 1st stage: Decomposition continues after 550 °C. An endothermic peak at 147.2 °C appeared on DTA curve without mass loss suggesting phase changes occurring due to its melting. Maximum rate of decomposition observed at 269.8 °C on DTG curve.
6		77.3 (31.8) 459.2 (153.9) 467.5 (158.5)	10.6 % (upto 300) 39.8 % (300-550) 50.4 % (50-550)	 1st stage: Loss of naphthyl (calc. 11.23 %). 2nd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 467.5 °C on DTG curve.
7	212.1 (7.75) 349.1 (6.50)	212.1 (131.6) 373.9 (150.2)	14.8 % (150-250) 35.2 % (250-550) 50.0 % (50-550)	 1st stage: Loss of 2CH₂Cl₂ (calc. 14.8 %). 2nd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 373.9 °C on DTG curve.
8	364.6 (39.59)	358.3 (93.1)	12.2 % (50-250) 48.5 % (250-550) 60.7% (100-550)	 1st stage: Loss of naphthyl (calc. 16.5%). 2nd stage: Decomposition continues after 550 °C. Maximum rate of decomposition observed at 358.3 °C on DTG curve.

Figure S32. DTG/DTA/TG curves a-h for binuclear xanthate/ *N*,*O*-Schiff base macrocyclic complexes 1-8, respectively.

References:

- (a) M. Thirumavalavan, P. Akilan, M. Kandaswamy, *Inorg. Chem.* 2003, 42, 3308. (b) A. S. A. Zidan, *Synth React Inorg Met. Org. chem.* 2001, 31, 457.
- (a) H. P. S. Chauhan, A. Bakshi, *J Therm. Anal. Calorim.*, 2011, 105, 937. (b) A.; Singhal, D. P. Dutta, A. K. Tyagi, M. M. Shaikh, P. Mathur, I. Lieberwirth, *J. Organomet. Chem.*, 2007, 692, 5285.
- 'POWDERX'' A program for indexing and refinement of X-ray data written by Dr. V. K. Wadhavan, Bhabha Atomic research Center, private communication.
- 4. S. K. Verma, R. Kadu, V. K. Singh, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2014, 44, 441.
- 5. L.-Q. Chai, G. Wang, Y.-X. Sun, W.-K. Dong, L. Zhao, X.-H. Gao, *J. Coord. Chem.* **2012**, *65*, 1621.
- R. Pandey, P. Kumar, A. K. Singh, M. Shahid, P. Z. Li, S. K. Singh, Q. Xu, A. Misra, D. S. Pandey, *Inorg. Chem.* 2011, 50, 3189.
- S. Sreedaran, K. S. Bharathi, A. K. Rahiman, L. Jagadish, V. Kaviyarasan, V. Narayanan, Polyhedron 2008, 27, 2931.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.

Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. A.-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004.

- 9. S. Salehzadeh, M. Bayat, Comp. Theor. Chem. 2011, 965, 131.
- K. G. Vladimirova, A. Y. Freidzon, O. V. Kotova, A. A. Vaschenko, L. S. Lepnev, A. A. Bagatur'yants, A. G. Vitukhnovskiy, N. F. Stepanov, M. V. Alfimov, *Inorg. Chem.* 2009, 48, 11123.
- 11. (a) V. K. Singh, R. Kadu, H. Roy, *Eur. J. Med. Chem.* **2014**, *74*, 552. (b) R. Kadu, V. K. Singh, S. K. Verma, P. Raghavaiah, M. M. Shaikh J Mol. Struct. **2013**, *1033*, 298.
- (a) S. R. Gadre, P. K. Bhadane, *Resonance*, **1999**, *4*, 11. (b) F. A. Bulat, A. T.-Labbé, T. Brinck, J. S. Murray, P. Politzer, *J Mol Model* **2010**, *16*, 1679. (c) P. Politzer, P. R. Laurence, K. Jayasuriya, *Environ. Health Perspect.* **1985**, *61*, 191.
- 13. S. R. Peerannawar, S. P. Gejji Phys. Chem. Chem. Phys., 2012, 14, 8711.
- 14. (a) S. P. Bach, R. Chinery, S. T. O'Dwyer, C. S. Potten, R. J. Coffey, A. J. Watson, *Gastroenterology* 2000, *118*, 81. (b) K. G. Daniel, D. Chen, S. Orlu, Q. C. Cui, F. R. Miller, Q. P. Dou, *Breast Cancer Res.* 2005, *7*, R897. (c) N. Segovia, G. Crovetto, P. Lardelli, M. Espigares, *J. Appl. Toxicol.* 2002, *22*, 353. (d) O. M. Viquez, H. L. Valentine, K. Amarnath, D. Milatovic, W. M. Valentine, *Toxicol. Appl. Pharmacol.* 2008, *229*, 77. (e) M. Chabicovsky, E. P.-Grassauer, J. Seipelt, T. Muster, O. H. J. Szolar, A. Hebar, O. D.-Dier, *Basic Clin. Pharmacol. Toxicol.* 2010, *107*, 758. (f) E. M. Nagy, S. Sitran, M. Montopoli, M. Favaro, L. Marchiò, L. Caparrotta, D. Fregona, *J Inorg. Biochem.* 2012, *117*, 131. (g) Y. Qian, G.-Y. Ma, Y. Yang, K. Cheng, Q.-Z. Zheng, W.-J. Mao, L. Shi, J. Zhao, H.-L. Zhu, *Bioorg. Med. Chem.* 2010, *18*, 4310.
- (a) V. Amarnath, K. Amarnath, W. M. Valentine, *Curr. Top. Toxicol.* 2007, *4*, 39. (b) J. I. Garcia, E. Humeres, *J. Org. Chem.* 2002, 67, 2755. (c) E. Humeres, N. A. Debacher, J. D. Franco, B. S. Lee, A. Martendal, *J. Org. Chem.* 2002, 67, 3662.
- 16. (a) V. Milacic, D. Chen, L. Ronconi, K. R. L.-Piwowar, D. Fregona, Q. P. Dou, *Cancer Res.* 2006, 66, 10478. (b) D. Chen, Q. Z. C. Cui, H. J. Yang, Q. P. Dou, *Cancer Res.* 2006, 66, 10425. (c) K. G. Daniel, P. Gupta, R. H. Harbach, W. C. Guida, Q. P. Dou, *Biochem. Pharmacol.* 2004, 67, 1139. (d) D. Chen, M. Frezza, R. Shakya, Q. C. Cui, V. Milacic, C. N. Verani, Q. P. Dou, *Cancer Res.* 2007, 67, 9258. (e) D. Chen, F. Peng, Q. C. Cui, K. G. Daniel, S. Orlu, J. Liu, Q. P. Dou, *Front. Biosci.* 2005, 10, 2932.
- 17. F. K. Keter, I. A. Guzei, M. Nell, W. E. van Zyl, J. Darkwa, *Inorg. Chem.* **2014**, *53*, 2058.
- (a) B. Cvek, V. Milacic, J. Taraba, Q. P. Dou, *J. Med. Chem.* **2008**, *51*, 6256. (b) V. Milacic, D. Chen, L. Giovagnini, A. Diez, D. Fregona, Q. P. Dou, *Toxicol. Appl. Pharmacol.* **2008**, *231*, 24.
- (a) R. Buchtik, Z. Travnicek, J. Vanco, R. Herchel, Z. Dvorak, *Dalton Trans.* 2011, 40, 9404. (b) S. S. Bhat, A. A. Kumbhar, H. Heptullah, A. A. Khan, V. V. Gobre, S. P. Gejji, V. G. Puranik, *Inorg. Chem.* 2011, 50, 545.
- 20. L. F. Chin, S. M. Kong, H. L. Seng, K. S. Khoo, R. Vikneswaran, S. G. Teoh, M. Ahmad, S. B. A. Khoo, M. J. Maah, C. H. Ng, *J. Inorg. Biochem.* **2011**, *105*, 339.
- 21. G. L. Parrilha, J. G. da Silva, L. F. Gouveia, A. K. Gasparoto, R. P. Dias, W. R. Rocha, D. A. Santos, N. L. Speziali, H. Beraldo, *Eur. J. Med. Chem.* 2011, 46, 1473.