Electronic Supporting Information

For the Manuscript Entitled

Trinuclear {Co²⁺-M³⁺- Co²⁺} Complexes Catalyze Reduction of Nitro Compounds

By

Sumit Srivastava, Manvender S Dagur, Afsar Ali,

and Rajeev Gupta*

<u>Index</u>

Figure S1. Absorption spectrum of complex 3 (blue trace) and 4 (red trace) recorded in DMF.

Figure S2. FTIR spectra of complex 3 (blue trace) and 4 (red trace).

Figure S3. TGA plots for complexes **3** (blue trace) and **4** (red trace).

Figure S4. Figure S4. Catalytic performance of catalyst **3** in the reduction of nitrobenzene to aniline displaying nearly identical performances during successive addition of five batches of nitrobenzene (a - e); a = b = c = d = e = 100% aniline formation. The yields were calculated using gas chromatograph.

Figure S5. (A) Reduction of 1-iodo-4-nitrobenzene with hydrazine in the presence of complex **3** showing maximum reduction at 4 h. (B) Catalyst was filtered after 2 h and as a result the reduction was stopped. (C) Catalyst was re-added after a gap of 2 h, and maximum reduction was observed after 2 h. In all cases, the yield was calculated using gas chromatograph.

Figure S6. FTIR spectra of complex **3** before (blue trace) and after (red trace) the reduction of nitrobenzene to aniline.

Figure S7. FTIR spectra of complex **4** before (blue trace) and after (red trace) the reduction of nitrobenzene to aniline.

Figure S8. X-ray powder diffraction patterns for complex **3** simulated by the Mercury 3.0 using single crystal data (blue trace), as-synthesized (red trace) and after the reduction of nitrobenzene to aniline (black trace).

Figure S9. UV/Vis spectral titration of complex 1 with varying amounts of hydrazine (1 equiv. -40 equiv.) displaying no change in the spectral features.

Figure S10. UV/Vis spectral titration of complex 2 with varying amounts of hydrazine (1 equiv. -40 equiv.) displaying no change in the spectral features.

Figure S11. UV/Vis spectrum of complex 7 (black trace); complex 7 after the addition of 0.25 equivalent of hydrazine (red trace); after the addition of 0.5 equivalent of bromine (green trace).

Figure S12. UV/Vis spectral monitoring for the reduction of nitrobenzene to aniline with respect to time using complex **3** and hydrazine in EtOH.

Figure S13. Selected portion of the ¹H NMR spectra recorded in D_2O of complex **3** before (lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).

Figure S14. Selected portion of the ¹H NMR spectra recorded in D_2O of complex 4 before (lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).

Figure S15. ¹H NMR spectrum of 4-aminotoluene (1b) in CDCl₃.

Figure S16. ¹³C NMR spectrum of 4-aminotoluene (1b) in CDCl₃.

Figure S17. ¹H NMR spectrum of 4-chloroaniline (1i) in DMSO-d₆.

Figure S18. ¹³C NMR spectrum of 4-chloroaniline (1i) in DMSO-d₆.

Figure S19. ¹H NMR spectrum of 4-aminobenzonitrile (10) in CDCl₃.

Figure S20. ¹³C NMR spectrum of 4-aminobenzonitrile (10) in CDCl₃.

Figure S21. ¹H NMR spectrum of ethyl-4-aminobenzoate (1q) in DMSO-d₆.

Figure S22. ¹³C NMR spectrum of ethyl-4-aminobenzoate (**1q**) in DMSO-d₆.

Figure S23. ¹H NMR spectrum of 1-napthylamine (1r) in CDCl₃.

Figure S24. ¹³C NMR spectrum of 1-napthylamine (1r) in CDCl₃.

Tables:

Table S1. X-ray crystallographic data collection and structure refinement parameters for complexes **3** and **4**.

Table S2. Selected bond lengths [Å] and bond angles [°] around the central Co^{3+} , Fe³⁺ and peripheral Co^{2+} metal ions for complexes **3** and **4**.

Table S3. Un-optimized ring-opening reactions of a few epoxides using aniline as the nucleophile with complex 7 as the catalyst.

Figure S1. Absorption spectrum of complexes **3** (blue trace) and **4** (red trace) recorded in DMF.

Figure S2. FTIR spectra for complexes **3** (blue trace) and **4** (red trace).

Figure S3. TGA plots for complexes **3** (blue trace) and **4** (red trace).

Figure S4. Catalytic performance of catalyst **3** in the reduction of nitrobenzene to aniline displaying identical performances during successive addition of five batches of nitrobenzene (a - e); a = b = c = d = e = 100% aniline formation. The yields were calculated using gas chromatograph.

Figure S5. (A) Reduction of 1-iodo-4-nitrobenzene with hydrazine in the presence of complex **3** showing maximum reduction at 4 h. (B) Catalyst was filtered after 2 h and as a result the reduction was stopped. (C) Catalyst was re-added after a gap of 2 h, and maximum reduction was observed after 2 h. In all cases, the yield was calculated using gas chromatograph.

Figure S6. FTIR spectra of complex **3** before (blue trace) and after (red trace) the reduction of nitrobenzene to aniline.

Figure S7. FTIR spectra of complex **4** before (blue trace) and after (red trace) the reduction of nitrobenzene to aniline.

Figure S8. X-ray powder diffraction patterns for complex **3** simulated by the Mercury 3.0 using single crystal data (blue trace), as-synthesized (red trace) and after the reduction of nitrobenzene to aniline (black trace).

Figure S9. UV/Vis spectral titration of complex 1 with varying amounts of hydrazine (1 equiv. – 40 equiv.) displaying no change in the spectral features.

Figure S10. UV/Vis spectral titration of complex 2 with varying amounts of hydrazine (1 equiv. – 40 equiv.) displaying no change in the spectral features.

Figure S11. UV/Vis spectrum of complex 7 (black trace); complex 7 after the addition of 0.25 equivalent of hydrazine (red trace); after the addition of 0.5 equivalent of bromine (green trace).

Figure S12. UV/Vis spectral monitoring for the reduction of nitrobenzene to aniline with respect to time using complex **3** and hydrazine in EtOH.

Figure S13. Selected portion of the ¹H NMR spectra recorded in D_2O of complex **3** before (lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).

Figure S14. Selected portion of the ¹H NMR spectra recorded in D_2O of complex 4 before (lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).

Figure S15. ¹H NMR spectrum of 4-aminotoluene (1b) in CDCl₃.

Figure S16. ¹³C NMR spectrum of 4-aminotoluene (1b) in CDCl₃.

Figure S17. ¹H NMR spectrum of 4-chloroaniline (1i) in DMSO-d₆.

Figure S18. ¹³C NMR spectrum of 4-chloroaniline (1i) in DMSO-d₆.

Figure S19. ¹H NMR spectrum of 4-aminobenzonitrile (10) in CDCl₃.

Figure S20. ¹³C NMR spectrum of 4-aminobenzonitrile (10) in CDCl₃.

Figure S21. ¹H NMR spectrum of ethyl-4-aminobenzoate (1q) in DMSO-d₆.

Figure S22. ¹³C NMR spectrum of ethyl-4-aminobenzoate (1q) in DMSO-d₆.

Figure S23. ¹H NMR spectrum of 1-napthylamine (1r) in CDCl₃.

Figure S24. ¹³C NMR spectrum of 1-napthylamine (1r) in CDCl₃.

	Complex 3	Complex 4			
CCDC No.	1058484	1058485			
Molecular formula	$C_{42}H_{42}Cl_4Co_3N_{11}O_4$	$C_{42}H_{42}Cl_4Co_2FeN_{11}O_4.4H_2O$			
Fw	1083.46	1144.38			
T(K)	293(2)	293(2)			
Crystal system	Triclinic	Triclinic			
Space group	P -1	P -1			
а	12.048(3)	12.0632(8)			
b	14.749(4)	14.8156(9)			
С	15.152(4)	15.2289(12)			
α	89.745(4)	89.271(5)			
β	72.994(4)	73.261(6)			
γ	84.012(5)	84.058(5)			
$V(\text{\AA}^3)$	2559.7(12)	2592.0(3)			
Z	2	2			
<i>d</i> (g cm ⁻³)	1.406	1.466			
F (000)	1104	1166			
Goodness of fit (F^2)	1.068	0.881			
$R_1, wR_2 [I > 2 (I)]$	0.0765, 0.1956	0.0611, 0.1387			
R_1 , w _{R2} [all data] ^[a]	0.1210, 0.2195	0.1394, 0.1555			
$[a]R_1 = \Sigma Fo - Fc / \Sigma Fo ; wR_2 = \{\Sigma [w(/Fo/^2 - /Fc/^2)^2] / \Sigma [wFo^4] \}^{1/2}$					

Table S1. X-ray crystallographic data collection and structure refinement parameters for complexes 3 and 4.

Complex 3		Complex 4	Complex 4		
Bond lengths		Bond lengths	Bond lengths		
Co(1)-N(1)	1.974(6)	Fe(1)-N(1)	1.952(5)		
Co(1)-N(2)	1.946(6)	Fe(1)-N(2)	1.958(5)		
Co(1)-N(3)	1.967(6)	Fe(1)-N(3)	1.949(6)		
Co(1)-N(4)	1.954(6)	Fe(1)-N(4)	1.962(5)		
Co(1)-N(5)	1.870(6)	Fe(1)-N(5)	1.864(4)		
Co(1)-N(6)	1.861(6)	Fe(1)-N(6)	1.862(4)		
Co(2)-N(7)	2.042(8)	Co(1)-N(7)	2.039(5)		
Co(2)-N(8)	2.055(6)	Co(1)-N(8)	2.052(5)		
Co(2)-Cl(1)	2.246(3)	Co(1)-Cl(1)	2.240(2)		
Co(2)-Cl(2)	2.248(3)	Co(1)-Cl(2)	2.246(3)		
Co(3)-N(9)	2.047(6)	Co(2)-N(9)	2.060(6)		
Co(3)-N(10)	2.048(6)	Co(2)-N(10)	2.052(6)		
Co(3)-Cl(3)	2.246(3)	Co(2)-Cl(3)	2.233(3)		
Co(3)-Cl(4)	2.253(2)	Co(2)-Cl(4)	2.254(3)		
Bond angles		Bond angles	Bond angles		
N(5)-Co(1)-N(6)	176.8(3)	N(5)- Fe(1)-N(6)	176.4(2)		
N(1)- Co(1)-N(3)	92.0(2)	N(1)- Fe(1)-N(3)	91.2(2)		
N(3)- Co(1)-N(2)	90.6(3)	N(3)- Fe(1)-N(2)	92.4(2)		
N(1)- Co(1)-N(2)	161.0(3)	N(1)- Fe(1)-N(2)	161.6(2)		
N(4)- Co(1)-N(3)	161.5(3)	N(4)- Fe(1)-N(3)	161.1(2)		
N(1)- Co(1)-N(4)	90.7(3)	N(1)- Fe(1)-N(4)	91.4(2)		
N(4)- Co(1)-N(2)	92.8(3)	N(4)- Fe(1)-N(2)	90.9(2)		
N(8)-Co(2)-N(7)	127.4(3)	N(8)-Co(1)-N(7)	126.7(2)		
Cl(2)-Co(2)-Cl(1)	113.4(1)	Cl(2)-Co(1)-Cl(1)	114.88(9)		
N(9)-Co(3)-N(10)	126.9(2)	N(9)-Co(2)-N(10)	126.3(2)		
Cl(4)-Co(3)-Cl(3)	115.56(9)	Cl(4)-Co(2)-Cl(3)	112.3(1)		

Table S2. Selected bond lengths [Å] and bond angles [°] around the central Co^{3+} and Fe^{3+} ; and peripheral Co^{2+} metal ions for complexes **3** and **4**.

Table S3. Un-optimized ring-opening reactions of a few epoxides using aniline as the nucleophile with complex 7 as the catalyst.

			Yield ^[b]
Entry ^[a]	Epoxide	Product	Catalyst 7
1		HQ NHPh	35
2	\rightarrow^{0}	HQ NHPh	55
3		PhHN	40

^{*a*}Conditions: catalyst: 5-mol%; 12 h stirring at room temperature (25 °C). ^{*b*}Yields were calculated from the gas chromatograph.