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Figure S1. Absorption spectrum of complexes 3 (blue trace) and 4 (red trace) recorded in 

DMF.

Figure S2. FTIR spectra for complexes 3 (blue trace) and 4 (red trace).
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Figure S3. TGA plots for complexes 3 (blue trace) and 4 (red trace).
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Figure S4. Catalytic performance of catalyst 3 in the reduction of nitrobenzene to aniline 
displaying identical performances during successive addition of five batches of nitrobenzene 
(a – e); a = b = c = d = e = 100% aniline formation. The yields were calculated using gas 
chromatograph.
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Figure S5. (A) Reduction of 1-iodo-4-nitrobenzene with hydrazine in the presence of 
complex 3 showing maximum reduction at 4 h. (B) Catalyst was filtered after 2 h and as a 
result the reduction was stopped. (C) Catalyst was re-added after a gap of 2 h, and maximum 
reduction was observed after 2 h. In all cases, the yield was calculated using gas 
chromatograph.

Figure S6. FTIR spectra of complex 3 before (blue trace) and after (red trace) the reduction of 
nitrobenzene to aniline.
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Figure S7. FTIR spectra of complex 4 before (blue trace) and after (red trace) the reduction of 
nitrobenzene to aniline.
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Figure S8. X-ray powder diffraction patterns for complex 3 simulated by the Mercury 3.0      
using single crystal data (blue trace), as-synthesized (red trace) and after the reduction of 
nitrobenzene to aniline (black trace).



8

Figure S9. UV/Vis spectral titration of complex 1 with varying amounts of hydrazine (1 
equiv. – 40 equiv.) displaying no change in the spectral features. 

Figure S10. UV/Vis spectral titration of complex 2 with varying amounts of hydrazine (1 
equiv. – 40 equiv.) displaying no change in the spectral features. 



9

Figure S11. UV/Vis spectrum of complex 7 (black trace); complex 7 after the addition of 
0.25 equivalent of hydrazine (red trace); after the addition of 0.5 equivalent of bromine 
(green trace).
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Figure S12. UV/Vis spectral monitoring for the reduction of nitrobenzene to aniline with 
respect to time using complex 3 and hydrazine in EtOH.
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Figure S13. Selected portion of the 1H NMR spectra recorded in D2O of complex 3 before 
(lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).

PPM

PPM

Figure S14. Selected portion of the 1H NMR spectra recorded in D2O of complex 4 before 
(lower trace) and after the addition of 0.5 equiv. of hydrazine (upper trace).
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Figure S15. 1H NMR spectrum of 4-aminotoluene (1b) in CDCl3.
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Figure S16. 13C NMR spectrum of 4-aminotoluene (1b) in CDCl3.



12

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5
PPM

2.
00

1.
99

1.
88

5.
16

6.
49
6.
51

6.
95
6.
97

Figure S17. 1H NMR spectrum of 4-chloroaniline (1i) in DMSO-d6.
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Figure S18. 13C NMR spectrum of 4-chloroaniline (1i) in DMSO-d6.
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Figure S19. 1H NMR spectrum of 4-aminobenzonitrile (1o) in CDCl3. 
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Figure S20. 13C NMR spectrum of 4-aminobenzonitrile (1o) in CDCl3.
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Figure S21. 1H NMR spectrum of ethyl-4-aminobenzoate (1q) in DMSO-d6.
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Figure S22. 13C NMR spectrum of ethyl-4-aminobenzoate (1q) in DMSO-d6.
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Figure S23. 1H NMR spectrum of 1-napthylamine (1r) in CDCl3.
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Figure S24. 13C NMR spectrum of 1-napthylamine (1r) in CDCl3.
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Table S1. X-ray crystallographic data collection and structure refinement parameters for 
complexes 3 and 4.

Complex 3 Complex 4

CCDC No. 1058484 1058485 

Molecular formula C42H42Cl4Co3N11O4 C42H42Cl4Co2FeN11O4.4H2O

Fw 1083.46 1144.38

T(K) 293(2) 293(2)

Crystal system Triclinic Triclinic

Space group P -1 P -1

a 12.048(3) 12.0632(8)

b 14.749(4) 14.8156(9)

c 15.152(4) 15.2289(12)

 89.745(4)                      89.271(5)

β 72.994(4) 73.261(6)

γ 84.012(5) 84.058(5)

V (Å3) 2559.7(12) 2592.0(3)

Z 2 2

d (g cm-3) 1.406 1.466

F (000) 1104 1166

Goodness of fit (F2) 1.068 0.881

R1, wR2 [I >2 (I)] 0.0765, 0.1956 0.0611, 0.1387

R1, wR2 [all data][a] 0.1210, 0.2195 0.1394, 0.1555

[a]R1 = Σ||Fo| – |Fc||/Σ|Fo|; wR2 = {Σ[w(/Fo/ 2 – /Fc/ 2 )2]/Σ[wFo4]}1/2
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Table S2. Selected bond lengths [Å] and bond angles [°] around the central Co3+ and Fe3+; 

and peripheral Co2+ metal ions for complexes 3 and 4.

Complex 3 Complex 4

Bond lengths Bond lengths

Co(1)-N(1) 1.974(6) Fe(1)-N(1) 1.952(5)

Co(1)-N(2) 1.946(6) Fe(1)-N(2) 1.958(5)

Co(1)-N(3) 1.967(6) Fe(1)-N(3) 1.949(6)

Co(1)-N(4) 1.954(6) Fe(1)-N(4) 1.962(5)

Co(1)-N(5) 1.870(6) Fe(1)-N(5) 1.864(4)

Co(1)-N(6) 1.861(6) Fe(1)-N(6) 1.862(4)

Co(2)-N(7) 2.042(8) Co(1)-N(7) 2.039(5)

Co(2)-N(8) 2.055(6) Co(1)-N(8) 2.052(5)

Co(2)-Cl(1) 2.246(3) Co(1)-Cl(1) 2.240(2)

Co(2)-Cl(2) 2.248(3) Co(1)-Cl(2) 2.246(3)

Co(3)-N(9) 2.047(6) Co(2)-N(9) 2.060(6)

Co(3)-N(10) 2.048(6) Co(2)-N(10) 2.052(6)

Co(3)-Cl(3) 2.246(3) Co(2)-Cl(3) 2.233(3)

Co(3)-Cl(4) 2.253(2) Co(2)-Cl(4) 2.254(3)

Bond angles Bond angles

N(5)-Co(1)-N(6) 176.8(3) N(5)- Fe(1)-N(6) 176.4(2)

N(1)- Co(1)-N(3) 92.0(2) N(1)- Fe(1)-N(3) 91.2(2)

N(3)- Co(1)-N(2) 90.6(3) N(3)- Fe(1)-N(2) 92.4(2)

N(1)- Co(1)-N(2) 161.0(3) N(1)- Fe(1)-N(2) 161.6(2)

N(4)- Co(1)-N(3) 161.5(3) N(4)- Fe(1)-N(3) 161.1(2)

N(1)- Co(1)-N(4) 90.7(3) N(1)- Fe(1)-N(4) 91.4(2)

N(4)- Co(1)-N(2) 92.8(3) N(4)- Fe(1)-N(2) 90.9(2)

N(8)-Co(2)-N(7) 127.4(3) N(8)-Co(1)-N(7) 126.7(2)

Cl(2)-Co(2)-Cl(1) 113.4(1) Cl(2)-Co(1)-Cl(1) 114.88(9)

N(9)-Co(3)-N(10) 126.9(2) N(9)-Co(2)-N(10) 126.3(2)

Cl(4)-Co(3)-Cl(3) 115.56(9) Cl(4)-Co(2)-Cl(3) 112.3(1)
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Table S3. Un-optimized ring-opening reactions of a few epoxides using aniline as the 

nucleophile with complex 7 as the catalyst.

aConditions: catalyst: 5-mol%; 12 h stirring at room temperature (25 C). bYields were 

calculated from the gas chromatograph. 

Yield[b]

Entry[a] Epoxide Product Catalyst 7
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