Supporting information

An intense NIR emission from Ca₁₄Al₁₀Zn₆O₃₅:Mn⁴⁺,Yb³⁺ via energy transfer for solar spectral convertor

Wei Lü^{a,*}, Mengmeng Jiao^{a,b}, Baiqi Shao^{a,b}, Lingfei Zhao^{a,b}, Yang Feng^{a,b} and Hongpeng You^{a,*}

^aState key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^bUniversity of the Chinese Academy of Sciences, Beijing 100049, P. R. China.

Experimental Section

Synthesis. The Ca_{14-x}Al_{9.85}Zn₆O₃₅(CAZO):0.15Mn⁴⁺,xYb³⁺(abbreviated as CAZO:Mn⁴⁺,xYb³⁺; Mn²⁺ substitutes for Al³⁺, Yb³⁺ substitutes for Ca²⁺, where the x is mole percent) phosphors were synthesized by a high-temperature solid-state reaction. The constituent oxides or carbonates CaCO₃ (A. R.), ZnO (A. R.), Al₂O₃ (A. R.), MnCO₃ (A. R.) and Yb₂O₃(99.99%) were employed as the raw materials, which were mixed homogeneously by an agate mortar for 30 minutes, placed in a crucible with a lid, and then sintered in a tubular furnace at 1220°C for 4 h in air.

Characterization. The phase purity of all samples were identified by powder X-ray diffraction (XRD) analysis (Bruker AXS D8), with graphite monochromatized Cu K α radiation ($\lambda = 0.15405$ nm) operating at 40 kV and 40 mA. The morphology and size of the as-prepared samples were inspected with a field emission scanning electron microscope equipped with an energy-dispersive spectrometer (EDS) (FE-SEM, S-4800, Hitachi, Japan). High-resolution transmission electron microscopic (HRTEM) images were recorded with a FEI Tecnai G2 S-Twin with a field-emission gun operating at 200 kV and a Gatan multiople CCD camera. Room-temperature photoluminescence (PL) spectra were measured on a Hitachi F-7000 luminescence spectrophotometer equipped with a 150 W xenon lamp as the excitation source. Absolute photoluminescence quantum yields (QYs) were measured by the absolute PL quantum yield measurement system (C9920-02, Hamamatsu Photonics K. K., Japan). The luminescence decay curves were obtained from a Lecroy Wave Runner 6100 digital oscilloscope (1GHz) using a tunable laser (pulse width = 4 ns, gate = 50 ns) as the excitation source (Continuum Sunlite OPO).

 $Figure \ S1. Absolute \ quantum \ yields \ of the \ Ca_{14}Al_{10}Zn_6O_{35}: Mn^{4+} \ excited \ with \ different \ wavelength.$

Figure S2. PL spectra of CAZO:Mn⁴⁺,xYb³⁺ phosphors with different Yb³⁺ concentrations under the excitation at 460 nm.