### **Electronic Supplementary Information**

# Understanding gate adsorption behaviour of CO<sub>2</sub> on elastic layer-structured metal-organic framework-11

Shotaro Hiraide, Hideki Tanaka,\* and Minoru T. Miyahara\*

Department of Chemical Engineering, Kyoto University, Nishikyo, Kyoto 615-8510, Japan \*E-mail: tanaka@cheme.kyoto-u.ac.jp; miyahara@cheme.kyoto-u.ac.jp

#### §1 Supplementary figures and tables

| Table S1 Interaction parameters for a  | a CO <sub>2</sub> molecule <sup>1</sup> |
|----------------------------------------|-----------------------------------------|
| site C                                 |                                         |
| $\sigma_{ m gg}  [ m nm]$              | 0.2789                                  |
| $arepsilon_{ m gg}$ / $k_{ m B}$ [K]   | 29.66                                   |
| <i>q</i> [ <i>e</i> ]                  | +0.576                                  |
| site O                                 |                                         |
| $\sigma_{ m gg}  [ m nm]$              | 0.3011                                  |
| $\varepsilon_{ m gg}$ / $k_{ m B}$ [K] | 82.96                                   |
| q [e]                                  | -0.288                                  |
| The C–O bond length [nm]               | 0.118                                   |
| The O–C–O bond angle [deg]             | 180                                     |



**Fig. S1** Rietveld refinement XRPD patterns of ELM-11  $\supset$  2CO<sub>2</sub> at (a) 195 K, (b) 223 K, (c) 248 K, and (d) 298 K. The bottom panels show the residual error.



Fig. S2 Snapshot of ELM-11  $\supset$  2CO<sub>2</sub> at 195 K (blue), 223 K (cyan), 248 K (green), 273 K (orange), and (d) 298 K (red).



Fig. S3 Atom types in the ELM-11 framework.

| Atom | x       | у       | Z       | $\sigma_{x}$ | $\sigma_{y}$ | $\sigma_{z}$ | $U[nm^2]$             |
|------|---------|---------|---------|--------------|--------------|--------------|-----------------------|
| Cu   | 0       | 0.19975 | 0.75    | _            | 0.00163      | _            | $7.07 \times 10^{-5}$ |
| В    | 0.19324 | 0.13481 | 0.63340 | 0.00618      | 0.00579      | 0.00442      | $2.83 \times 10^{-4}$ |
| F1   | 0.27593 | 0.08389 | 0.67688 | 0.00202      | 0.00255      | 0.00147      | $2.83 \times 10^{-4}$ |
| F2   | 0.22855 | 0.21220 | 0.58290 | 0.00203      | 0.00242      | 0.00139      | $2.83 \times 10^{-4}$ |
| F3   | 0.12945 | 0.20055 | 0.67972 | 0.00204      | 0.00291      | 0.00149      | $2.83 \times 10^{-4}$ |
| F4   | 0.13921 | 0.03984 | 0.59684 | 0.00205      | 0.00283      | 0.00171      | $2.83 \times 10^{-4}$ |
| N1   | 0.10185 | 0.20157 | 0.84166 | 0.00342      | 0.00542      | 0.00249      | $2.83 \times 10^{-4}$ |
| N2   | 0       | 0.38282 | 0.75    | _            | 0.00825      | _            | $2.83 \times 10^{-4}$ |
| N3   | 0       | 0.01394 | 0.75    | _            | 0.00774      | _            | $2.83 \times 10^{-4}$ |
| C1   | 0.18136 | 0.27543 | 0.84330 | 0.00514      | 0.00557      | 0.00302      | $2.83 \times 10^{-4}$ |
| C2   | 0.24022 | 0.29421 | 0.90694 | 0.00420      | 0.00537      | 0.00411      | $2.83 \times 10^{-4}$ |
| C3   | 0.21803 | 0.23948 | 0.96591 | 0.00485      | 0.00560      | 0.00285      | $2.83 \times 10^{-4}$ |
| C4   | 0.13988 | 0.16599 | 0.96523 | 0.00503      | 0.00531      | 0.00340      | $2.83 \times 10^{-4}$ |
| C5   | 0.08072 | 0.14675 | 0.90163 | 0.00419      | 0.00501      | 0.00400      | $2.83 \times 10^{-4}$ |
| C6   | 0.04097 | 0.44332 | 0.69588 | 0.00351      | 0.00481      | 0.00302      | $2.83 \times 10^{-4}$ |
| C7   | 0.04201 | 0.56587 | 0.69463 | 0.00347      | 0.00481      | 0.00329      | $2.83 \times 10^{-4}$ |
| C8   | 0       | 0.63035 | 0.75    | _            | 0.00837      | -            | $2.83 \times 10^{-4}$ |
| С9   | 0       | 0.76477 | 0.75    | _            | 0.00720      | _            | $2.83 \times 10^{-4}$ |
| C10  | 0.08853 | 0.82973 | 0.76799 | 0.00358      | 0.00480      | 0.00294      | $2.83 \times 10^{-4}$ |
| C11  | 0.08627 | 0.95315 | 0.76747 | 0.00333      | 0.00506      | 0.00261      | $2.83 \times 10^{-4}$ |
| H1   | 0.19880 | 0.32009 | 0.79417 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| H2   | 0.12278 | 0.12142 | 1.01447 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| H3   | 0.30363 | 0.35319 | 0.90805 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| H4   | 0.01773 | 0.08720 | 0.90126 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| Н5   | 0.07284 | 0.39288 | 0.65367 | _            | _            | -            | $4.24 \times 10^{-4}$ |
| Н6   | 0.07483 | 0.61283 | 0.65148 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| H7   | 0.15312 | 1.00378 | 0.78095 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| H8   | 0.15713 | 0.78296 | 0.78197 | _            | _            | _            | $4.24 \times 10^{-4}$ |
| C12  | 0.41480 | 0.17871 | 0.51775 | 0.00979      | 0.01063      | 0.00771      | $2.54 \times 10^{-3}$ |
| 01   | 0.44862 | 0.27429 | 0.53614 | 0.00569      | 0.00611      | 0.00322      | $2.54 \times 10^{-3}$ |
| 02   | 0.37952 | 0.08370 | 0.49942 | 0.00495      | 0.00679      | 0.00323      | $2.54 \times 10^{-3}$ |

**Table S2** Atomic coordinates of ELM-11  $\supset$  2CO<sub>2</sub> at 195 K in space group *C*2/*c*. Atom types of ELM-11 are shown in Fig. S3 and C12, O1, and O2 are atoms of adsorbed CO<sub>2</sub>.

 $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are standard deviations and U is isotropic atomic displacement parameter. The U parameters for CO<sub>2</sub> (C12, O1, and O2) are those evaluated from anisotropic atomic displacement parameters ( $U_{11} = 2.80 \times 10^{-3}$  nm<sup>2</sup>,  $U_{22} = 3.79 \times 10^{-3}$  nm<sup>2</sup>,  $U_{33} = 1.04 \times 10^{-3}$  nm<sup>2</sup>,  $U_{12} = -2.84 \times 10^{-4}$  nm<sup>2</sup>,  $U_{13} = 1.66 \times 10^{-4}$  nm<sup>2</sup>, and  $U_{23} = 1.00 \times 10^{-5}$  nm<sup>2</sup>). The linear constraints for the atomic displacement parameters were imposed as follows:  $U^{\rm B} = U^{\rm F} = U^{\rm N} = U^{\rm C(host)}$ ;  $U^{\rm Cu} = 0.25 \times U^{\rm B}$ ;  $U^{\rm H} = 1.5 \times U^{\rm B}$ ; and  $U_{ij}^{\rm C12} = U_{ij}^{\rm O}$ .

| Atom | x       | у       | Z       | $\sigma_{x}$ | $\sigma_{y}$ | $\sigma_{\!z}$ | $U[nm^2]$             |
|------|---------|---------|---------|--------------|--------------|----------------|-----------------------|
| Cu   | 0       | 0.19971 | 0.75    | _            | 0.00134      | _              | $7.97 	imes 10^{-5}$  |
| В    | 0.19498 | 0.12291 | 0.63928 | 0.00521      | 0.00549      | 0.00400        | $3.19 	imes 10^{-4}$  |
| F1   | 0.27064 | 0.07080 | 0.68430 | 0.00183      | 0.00222      | 0.00116        | $3.19 	imes 10^{-4}$  |
| F2   | 0.23645 | 0.20722 | 0.59312 | 0.00153      | 0.00240      | 0.00128        | $3.19 	imes 10^{-4}$  |
| F3   | 0.12661 | 0.18392 | 0.68249 | 0.00199      | 0.00255      | 0.00131        | $3.19 	imes 10^{-4}$  |
| F4   | 0.14537 | 0.03097 | 0.59753 | 0.00177      | 0.00239      | 0.00145        | $3.19 	imes 10^{-4}$  |
| N1   | 0.09473 | 0.20572 | 0.84092 | 0.00278      | 0.00441      | 0.00233        | $3.19 	imes 10^{-4}$  |
| N2   | 0       | 0.38118 | 0.75    | _            | 0.00641      | _              | $3.19 	imes 10^{-4}$  |
| N3   | 0       | 0.01191 | 0.75    | _            | 0.00672      | _              | $3.19 	imes 10^{-4}$  |
| C1   | 0.16828 | 0.28755 | 0.84029 | 0.00413      | 0.00549      | 0.00234        | $3.19 	imes 10^{-4}$  |
| C2   | 0.23008 | 0.30567 | 0.90284 | 0.00339      | 0.00477      | 0.00316        | $3.19 	imes 10^{-4}$  |
| C3   | 0.21463 | 0.23989 | 0.96364 | 0.00386      | 0.00451      | 0.00269        | $3.19 	imes 10^{-4}$  |
| C4   | 0.14055 | 0.15900 | 0.96229 | 0.00417      | 0.00421      | 0.00329        | $3.19 	imes 10^{-4}$  |
| C5   | 0.08087 | 0.14241 | 0.90066 | 0.00404      | 0.00418      | 0.00366        | $3.19 	imes 10^{-4}$  |
| C6   | 0.04461 | 0.44180 | 0.69798 | 0.00308      | 0.00455      | 0.00258        | $3.19 	imes 10^{-4}$  |
| C7   | 0.04528 | 0.56463 | 0.69710 | 0.00324      | 0.00388      | 0.00308        | $3.19 	imes 10^{-4}$  |
| C8   | 0       | 0.62857 | 0.75    | _            | 0.00802      | _              | $3.19 	imes 10^{-4}$  |
| С9   | 0       | 0.76208 | 0.75    | _            | 0.00610      | _              | $3.19 	imes 10^{-4}$  |
| C10  | 0.08865 | 0.82615 | 0.75975 | 0.00337      | 0.00412      | 0.00242        | $3.19 	imes 10^{-4}$  |
| C11  | 0.08725 | 0.95127 | 0.75965 | 0.00326      | 0.00440      | 0.00231        | $3.19 	imes 10^{-4}$  |
| H1   | 0.17959 | 0.33867 | 0.79219 | _            | -            | _              | $4.78 	imes 10^{-4}$  |
| H2   | 0.12840 | 0.10727 | 1.00999 | _            | _            | _              | $4.78 	imes 10^{-4}$  |
| H3   | 0.28967 | 0.37053 | 0.90402 | _            | _            | _              | $4.78 	imes 10^{-4}$  |
| H4   | 0.02165 | 0.07714 | 0.90029 | _            | _            | _              | $4.78 	imes 10^{-4}$  |
| Н5   | 0.07960 | 0.39173 | 0.65726 | _            | _            | _              | $4.78 	imes 10^{-4}$  |
| Н6   | 0.08072 | 0.61226 | 0.65563 | -            | -            | _              | $4.78 	imes 10^{-4}$  |
| H7   | 0.15564 | 1.00128 | 0.76728 | _            | _            | _              | $4.78 	imes 10^{-4}$  |
| H8   | 0.15816 | 0.77847 | 0.76734 | -            | -            | _              | $4.78 	imes 10^{-4}$  |
| C12  | 0.39776 | 0.15554 | 0.51205 | 0.01526      | 0.01581      | 0.01358        | $2.73 \times 10^{-3}$ |
| 01   | 0.42726 | 0.25116 | 0.53226 | 0.01365      | 0.01030      | 0.00964        | $2.73 \times 10^{-3}$ |
| 02   | 0.36826 | 0.05991 | 0.49183 | 0.01173      | 0.01234      | 0.00894        | $2.73 \times 10^{-3}$ |

**Table S3** Atomic coordinates of ELM-11  $\supset$  2CO<sub>2</sub> at 223 K in space group *C*2/*c*. Atom types of ELM-11 are shown in Fig. S3 and C12, O1, and O2 are atoms of adsorbed CO<sub>2</sub>.

 $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are standard deviations and U is isotropic atomic displacement parameter. The U parameters for CO<sub>2</sub> (C12, O1, and O2) are those evaluated from anisotropic atomic displacement parameters ( $U_{11} = 2.74 \times 10^{-3}$  nm<sup>2</sup>,  $U_{22} = 3.95 \times 10^{-3}$  nm<sup>2</sup>,  $U_{33} = 1.63 \times 10^{-3}$  nm<sup>2</sup>,  $U_{12} = -6.02 \times 10^{-4}$  nm<sup>2</sup>,  $U_{13} = 9.37 \times 10^{-4}$  nm<sup>2</sup>, and  $U_{23} = 7.84 \times 10^{-4}$  nm<sup>2</sup>). The linear constraints for the atomic displacement parameters were imposed as follows:  $U^{\rm B} = U^{\rm F} = U^{\rm N} = U^{\rm C(host)}$ ;  $U^{\rm Cu} = 0.25 \times U^{\rm B}$ ;  $U^{\rm H} = 1.5 \times U^{\rm B}$ ; and  $U_{ij}^{\rm C12} = U_{ij}^{\rm O}$ .

| Atom | x       | у       | Z       | $\sigma_{x}$ | $\sigma_{y}$ | $\sigma_{\!z}$ | $U[nm^2]$             |
|------|---------|---------|---------|--------------|--------------|----------------|-----------------------|
| Cu   | 0       | 0.19491 | 0.75    | _            | 0.00130      | _              | $9.30 \times 10^{-5}$ |
| В    | 0.19698 | 0.12616 | 0.64006 | 0.00603      | 0.00564      | 0.00405        | $3.72 \times 10^{-4}$ |
| F1   | 0.27646 | 0.07926 | 0.68384 | 0.00186      | 0.00224      | 0.00114        | $3.72 \times 10^{-4}$ |
| F2   | 0.23268 | 0.20228 | 0.58870 | 0.00156      | 0.00235      | 0.00121        | $3.72 \times 10^{-4}$ |
| F3   | 0.13342 | 0.19372 | 0.68351 | 0.00189      | 0.00282      | 0.00133        | $3.72 \times 10^{-4}$ |
| F4   | 0.14370 | 0.02899 | 0.60492 | 0.00163      | 0.00257      | 0.00142        | $3.72 \times 10^{-4}$ |
| N1   | 0.09572 | 0.20417 | 0.84045 | 0.00282      | 0.00433      | 0.00231        | $3.72 \times 10^{-4}$ |
| N2   | 0       | 0.38058 | 0.75    | _            | 0.00660      | _              | $3.72 \times 10^{-4}$ |
| N3   | 0       | 0.01218 | 0.75    | _            | 0.00712      | _              | $3.72 \times 10^{-4}$ |
| C1   | 0.16923 | 0.28574 | 0.84068 | 0.00411      | 0.00564      | 0.00252        | $3.72 \times 10^{-4}$ |
| C2   | 0.23009 | 0.30392 | 0.90320 | 0.00338      | 0.00518      | 0.00316        | $3.72 \times 10^{-4}$ |
| C3   | 0.21446 | 0.23936 | 0.96315 | 0.00399      | 0.00469      | 0.00277        | $3.72 \times 10^{-4}$ |
| C4   | 0.14060 | 0.15836 | 0.96160 | 0.00450      | 0.00498      | 0.00301        | $3.72 \times 10^{-4}$ |
| C5   | 0.08103 | 0.14087 | 0.89977 | 0.00387      | 0.00428      | 0.00381        | $3.72 \times 10^{-4}$ |
| C6   | 0.04430 | 0.44123 | 0.69820 | 0.00297      | 0.00468      | 0.00271        | $3.72 \times 10^{-4}$ |
| C7   | 0.04495 | 0.56407 | 0.69735 | 0.00333      | 0.00411      | 0.00306        | $3.72 \times 10^{-4}$ |
| C8   | 0       | 0.62806 | 0.75    | _            | 0.00785      | _              | $3.72 \times 10^{-4}$ |
| С9   | 0       | 0.76162 | 0.75    | _            | 0.00637      | _              | $3.72 \times 10^{-4}$ |
| C10  | 0.08849 | 0.82572 | 0.75979 | 0.00334      | 0.00438      | 0.00232        | $3.72 \times 10^{-4}$ |
| C11  | 0.08713 | 0.95155 | 0.75970 | 0.00349      | 0.00396      | 0.00254        | $3.72 \times 10^{-4}$ |
| H1   | 0.18092 | 0.33668 | 0.79276 | _            | _            | _              | $5.58 	imes 10^{-4}$  |
| H2   | 0.12851 | 0.10718 | 1.00935 | _            | _            | _              | $5.58 	imes 10^{-4}$  |
| H3   | 0.28961 | 0.36872 | 0.90467 | _            | _            | _              | $5.58 	imes 10^{-4}$  |
| H4   | 0.02180 | 0.07571 | 0.89870 | _            | _            | _              | $5.58 	imes 10^{-4}$  |
| Н5   | 0.07905 | 0.39119 | 0.65764 | _            | _            | _              | $5.58 	imes 10^{-4}$  |
| Н6   | 0.08012 | 0.61177 | 0.65608 | -            | -            | _              | $5.58 	imes 10^{-4}$  |
| H7   | 0.15542 | 1.00155 | 0.76736 | -            | -            | _              | $5.58 	imes 10^{-4}$  |
| H8   | 0.15785 | 0.77798 | 0.76742 | -            | -            | _              | $5.58 	imes 10^{-4}$  |
| C12  | 0.39786 | 0.15370 | 0.51125 | 0.01634      | 0.02360      | 0.01665        | $3.27 \times 10^{-3}$ |
| 01   | 0.42876 | 0.24739 | 0.53383 | 0.01721      | 0.01727      | 0.01316        | $3.27 \times 10^{-3}$ |
| 02   | 0.36696 | 0.06002 | 0.48869 | 0.01518      | 0.01865      | 0.01237        | $3.27 \times 10^{-3}$ |

**Table S4** Atomic coordinates of ELM-11  $\supset$  2CO<sub>2</sub> at 248 K in space group *C*2/*c*. Atom types of ELM-11 are shown in Fig. S3 and C12, O1, and O2 are atoms of adsorbed CO<sub>2</sub>.

 $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are standard deviations and U is isotropic atomic displacement parameter. The U parameters for CO<sub>2</sub> (C12, O1, and O2) are those evaluated from anisotropic atomic displacement parameters ( $U_{11} = 2.33 \times 10^{-3}$  nm<sup>2</sup>,  $U_{22} = 5.79 \times 10^{-3}$  nm<sup>2</sup>,  $U_{33} = 1.70 \times 10^{-3}$  nm<sup>2</sup>,  $U_{12} = 6.41 \times 10^{-4}$  nm<sup>2</sup>,  $U_{13} = 2.95 \times 10^{-4}$  nm<sup>2</sup>, and  $U_{23} = 1.59 \times 10^{-3}$  nm<sup>2</sup>). The linear constraints for the atomic displacement parameters were imposed as follows:  $U^{\rm B} = U^{\rm F} = U^{\rm N} = U^{\rm C(host)}$ ;  $U^{\rm Cu} = 0.25 \times U^{\rm B}$ ;  $U^{\rm H} = 1.5 \times U^{\rm B}$ ; and  $U_{ij}^{\rm C12} = U_{ij}^{\rm O}$ .

| Atom | x       | У       | Z       | $\sigma_{x}$ | $\sigma_{y}$ | $\sigma_{z}$ | $U[nm^2]$             |
|------|---------|---------|---------|--------------|--------------|--------------|-----------------------|
| Cu   | 0       | 0.19281 | 0.75    | _            | 0.00114      | _            | $1.34 \times 10^{-4}$ |
| В    | 0.19563 | 0.11984 | 0.64423 | 0.00569      | 0.00515      | 0.00422      | $5.34 	imes 10^{-4}$  |
| F1   | 0.27073 | 0.06941 | 0.69054 | 0.00161      | 0.00190      | 0.00123      | $5.34 	imes 10^{-4}$  |
| F2   | 0.23654 | 0.19253 | 0.59436 | 0.00152      | 0.00286      | 0.00114      | $5.34 	imes 10^{-4}$  |
| F3   | 0.13256 | 0.19178 | 0.68463 | 0.00205      | 0.00255      | 0.00127      | $5.34 	imes 10^{-4}$  |
| F4   | 0.14045 | 0.02442 | 0.60743 | 0.00159      | 0.00234      | 0.00131      | $5.34 	imes 10^{-4}$  |
| N1   | 0.09943 | 0.19919 | 0.83834 | 0.00257      | 0.00436      | 0.00200      | $5.34 	imes 10^{-4}$  |
| N2   | 0       | 0.38035 | 0.75    | -            | 0.00586      | _            | $5.34 	imes 10^{-4}$  |
| N3   | 0       | 0.01305 | 0.75    | -            | 0.00674      | _            | $5.34 	imes 10^{-4}$  |
| C1   | 0.17252 | 0.27971 | 0.84012 | 0.00376      | 0.00549      | 0.00264      | $5.34 	imes 10^{-4}$  |
| C2   | 0.23247 | 0.30018 | 0.90425 | 0.00310      | 0.00506      | 0.00283      | $5.34 	imes 10^{-4}$  |
| C3   | 0.21649 | 0.23863 | 0.96391 | 0.00366      | 0.00499      | 0.00261      | $5.34 	imes 10^{-4}$  |
| C4   | 0.14311 | 0.15790 | 0.96174 | 0.00373      | 0.00448      | 0.00265      | $5.34 	imes 10^{-4}$  |
| C5   | 0.08398 | 0.13864 | 0.89771 | 0.00382      | 0.00377      | 0.00329      | $5.34 	imes 10^{-4}$  |
| C6   | 0.04017 | 0.44108 | 0.69691 | 0.00267      | 0.00371      | 0.00257      | $5.34 	imes 10^{-4}$  |
| C7   | 0.04084 | 0.56606 | 0.69588 | 0.00315      | 0.00380      | 0.00263      | $5.34 	imes 10^{-4}$  |
| C8   | 0       | 0.62901 | 0.75    | -            | 0.00730      | _            | $5.34 	imes 10^{-4}$  |
| С9   | 0       | 0.76257 | 0.75    | -            | 0.00598      | _            | $5.34 	imes 10^{-4}$  |
| C10  | 0.08639 | 0.82586 | 0.77173 | 0.00332      | 0.00385      | 0.00262      | $5.34 	imes 10^{-4}$  |
| C11  | 0.08469 | 0.95217 | 0.77137 | 0.00323      | 0.00404      | 0.00240      | $5.34 	imes 10^{-4}$  |
| H1   | 0.18536 | 0.32892 | 0.79222 | -            | -            | _            | $8.01 	imes 10^{-4}$  |
| H2   | 0.12980 | 0.10800 | 1.00929 | -            | _            | _            | $8.01 	imes 10^{-4}$  |
| Н3   | 0.29137 | 0.36522 | 0.90578 | -            | _            | _            | $8.01 	imes 10^{-4}$  |
| H4   | 0.02503 | 0.07370 | 0.89658 | -            | _            | _            | $8.01 	imes 10^{-4}$  |
| Н5   | 0.07159 | 0.39088 | 0.65549 | -            | -            | _            | $8.01 \times 10^{-4}$ |
| Н6   | 0.07267 | 0.61354 | 0.65360 | -            | -            | _            | $8.01 \times 10^{-4}$ |
| H7   | 0.15060 | 1.00245 | 0.78805 | -            | -            | _            | $8.01 \times 10^{-4}$ |
| H8   | 0.15366 | 0.77845 | 0.78860 | -            | -            | _            | $8.01 \times 10^{-4}$ |
| C12  | 0.39657 | 0.14921 | 0.50408 | 0.01687      | 0.01628      | 0.01854      | $3.64 	imes 10^{-3}$  |
| 01   | 0.42000 | 0.24763 | 0.52335 | 0.01413      | 0.00948      | 0.01445      | $3.64 \times 10^{-3}$ |
| 02   | 0.37298 | 0.05091 | 0.48479 | 0.01173      | 0.01351      | 0.01229      | $3.64 \times 10^{-3}$ |

**Table S5** Atomic coordinates of ELM-11  $\supset$  2CO<sub>2</sub> at 298 K in space group *C*2/*c*. Atom types of ELM-11 are shown in Fig. S3 and C12, O1, and O2 are atoms of adsorbed CO<sub>2</sub>.

 $\sigma_x$ ,  $\sigma_y$  and  $\sigma_z$  are standard deviations and U is isotropic atomic displacement parameter. The U parameters for CO<sub>2</sub> (C12, O1, and O2) are those evaluated from anisotropic atomic displacement parameters ( $U_{11} = 2.45 \times 10^{-3}$  nm<sup>2</sup>,  $U_{22} = 4.87 \times 10^{-3}$  nm<sup>2</sup>,  $U_{33} = 3.55 \times 10^{-3}$  nm<sup>2</sup>,  $U_{12} = 1.67 \times 10^{-3}$  nm<sup>2</sup>,  $U_{13} = 6.84 \times 10^{-5}$  nm<sup>2</sup>, and  $U_{23} = -1.50 \times 10^{-4}$  nm<sup>2</sup>). The linear constraints for the atomic displacement parameters were imposed as follows:  $U^{B} = U^{F} = U^{N} = U^{C(host)}$ ;  $U^{Cu} = 0.25 \times U^{B}$ ;  $U^{H} = 1.5 \times U^{B}$ ; and  $U_{ij}^{C12} = U_{ij}^{O}$ .



Fig. S4 Le Bail fitting pattern of ELM-11 at (a) 195 K, (b) 223 K, (c) 248 K, and (d) 298 K. The bottom panels show the residual error.

| Atom | x       | у       | Ζ       | $\sigma_{x}$ | $\sigma_{y}$ | $\sigma_{z}$ | $U[\mathrm{nm}^2]$    |
|------|---------|---------|---------|--------------|--------------|--------------|-----------------------|
| Cu   | 0       | 0.19748 | 0.75    | _            | 0.00097      | _            | $7.95 	imes 10^{-5}$  |
| В    | 0.76309 | 0.11747 | 0.60732 | 0.00523      | 0.00471      | 0.00375      | $3.18 \times 10^{-4}$ |
| F1   | 0.73463 | 0.05132 | 0.67095 | 0.00153      | 0.00212      | 0.00122      | $3.18 \times 10^{-4}$ |
| F2   | 0.66401 | 0.17222 | 0.55809 | 0.00168      | 0.00189      | 0.00142      | $3.18 	imes 10^{-4}$  |
| F3   | 0.83849 | 0.20862 | 0.64247 | 0.00176      | 0.00190      | 0.00121      | $3.18 	imes 10^{-4}$  |
| F4   | 0.81184 | 0.04581 | 0.55625 | 0.00177      | 0.00220      | 0.00139      | $3.18 	imes 10^{-4}$  |
| N1   | 0.08925 | 0.21568 | 0.65847 | 0.00278      | 0.00334      | 0.00196      | $3.18 	imes 10^{-4}$  |
| N2   | 0       | 0.38048 | 0.75    | _            | 0.00522      | _            | $3.18 	imes 10^{-4}$  |
| N3   | 0       | 1.01519 | 0.75    | _            | 0.00494      | _            | $3.18 	imes 10^{-4}$  |
| C1   | 0.19109 | 0.25881 | 0.67978 | 0.00431      | 0.00356      | 0.00234      | $3.18 	imes 10^{-4}$  |
| C2   | 0.25652 | 0.27325 | 0.61711 | 0.00351      | 0.00341      | 0.00306      | $3.18 	imes 10^{-4}$  |
| C3   | 0.21637 | 0.24292 | 0.53312 | 0.00402      | 0.00436      | 0.00301      | $3.18 	imes 10^{-4}$  |
| C4   | 0.11672 | 0.20077 | 0.51267 | 0.00365      | 0.00444      | 0.00226      | $3.18 	imes 10^{-4}$  |
| C5   | 0.05014 | 0.18616 | 0.57563 | 0.00285      | 0.00417      | 0.00306      | $3.18 	imes 10^{-4}$  |
| C6   | 0.96691 | 0.44101 | 0.67579 | 0.00292      | 0.00309      | 0.00264      | $3.18 	imes 10^{-4}$  |
| C7   | 0.96615 | 0.56756 | 0.67412 | 0.00311      | 0.00308      | 0.00238      | $3.18 	imes 10^{-4}$  |
| C8   | 0       | 0.63160 | 0.75    | _            | 0.00548      | _            | $3.18 	imes 10^{-4}$  |
| С9   | 0       | 0.76434 | 0.75    | _            | 0.00510      | _            | $3.18 	imes 10^{-4}$  |
| C10  | 0.94313 | 0.82858 | 0.80394 | 0.00328      | 0.00316      | 0.00284      | $3.18 	imes 10^{-4}$  |
| C11  | 0.94445 | 0.95490 | 0.80269 | 0.00364      | 0.00311      | 0.00272      | $3.18 	imes 10^{-4}$  |
| H1   | 0.22311 | 0.28243 | 0.74447 | _            | _            | _            | $4.77 \times 10^{-4}$ |
| H2   | 0.33869 | 0.30816 | 0.63396 | _            | _            | _            | $4.77 	imes 10^{-4}$  |
| H3   | 0.08439 | 0.17683 | 0.44809 | _            | _            | _            | $4.77 	imes 10^{-4}$  |
| H4   | 0.96811 | 0.15139 | 0.55729 | _            | _            | _            | $4.77 	imes 10^{-4}$  |
| Н5   | 0.94129 | 0.39105 | 0.61827 | _            | _            | -            | $4.77 	imes 10^{-4}$  |
| H6   | 0.93992 | 0.61433 | 0.61533 | _            | _            | _            | $4.77 \times 10^{-4}$ |
| H7   | 0.90127 | 1.00494 | 0.84364 | _            | _            | -            | $4.77 	imes 10^{-4}$  |
| H8   | 0.89895 | 0.78188 | 0.84584 | _            | _            | _            | $4.77 \times 10^{-4}$ |

**Table S6** Atomic coordinates of ELM-11 at 273 K in space group C2/c. Atom types of ELM-11 are shown in Fig. S3.

 $\overline{\sigma_x}$ ,  $\overline{\sigma_y}$  and  $\overline{\sigma_z}$  are standard deviations and U is isotropic atomic displacement parameter. The linear constraints for the atomic displacement parameter were imposed as follows:  $U^{\text{B}} = U^{\text{F}} = U^{\text{N}} = U^{\text{C}}$ ;  $U^{\text{Cu}} = 0.25 \times U^{\text{B}}$ ; and  $U^{\text{H}} = 1.5 \times U^{\text{B}}$ .

| Temperature | 195 K                 | 223 K                 | 248 K                 | 273 K                 | 298 K                 |  |
|-------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Atom        | <i>q</i> [ <i>e</i> ] |  |
| Cu          | 0.642                 | 0.615                 | 0.619                 | 0.615                 | 0.621                 |  |
| В           | 0.799                 | 0.791                 | 0.786                 | 0.774                 | 0.788                 |  |
| F1          | -0.426                | -0.392                | -0.386                | -0.408                | -0.390                |  |
| F2          | -0.346                | -0.379                | -0.361                | -0.368                | -0.365                |  |
| F3          | -0.435                | -0.421                | -0.423                | -0.421                | -0.426                |  |
| F4          | -0.420                | -0.416                | -0.434                | -0.399                | -0.433                |  |
| N1          | -0.403                | -0.401                | -0.403                | -0.382                | -0.400                |  |
| N2          | -0.443                | -0.454                | -0.457                | -0.465                | -0.446                |  |
| N3          | -0.423                | -0.410                | -0.419                | -0.409                | -0.412                |  |
| C1          | 0.077                 | 0.089                 | 0.087                 | 0.088                 | 0.087                 |  |
| C2          | -0.121                | -0.132                | -0.128                | -0.120                | -0.136                |  |
| C3          | 0.114                 | 0.029                 | 0.034                 | 0.046                 | 0.061                 |  |
| C4          | -0.131                | -0.086                | -0.093                | -0.046                | -0.112                |  |
| C5          | 0.069                 | 0.087                 | 0.084                 | 0.052                 | 0.071                 |  |
| C6          | 0.117                 | 0.103                 | 0.109                 | 0.106                 | 0.104                 |  |
| C7          | -0.055                | -0.058                | -0.054                | -0.073                | -0.058                |  |
| C8          | 0.038                 | 0.052                 | 0.042                 | 0.077                 | 0.048                 |  |
| С9          | -0.033                | 0.009                 | -0.006                | 0.038                 | -0.011                |  |
| C10         | -0.098                | -0.103                | -0.093                | -0.118                | -0.100                |  |
| C11         | 0.114                 | 0.096                 | 0.104                 | 0.098                 | 0.101                 |  |
| H1          | 0.165                 | 0.167                 | 0.162                 | 0.147                 | 0.161                 |  |
| H2          | 0.182                 | 0.168                 | 0.168                 | 0.181                 | 0.185                 |  |
| Н3          | 0.120                 | 0.123                 | 0.121                 | 0.161                 | 0.121                 |  |
| H4          | 0.145                 | 0.160                 | 0.157                 | 0.128                 | 0.159                 |  |
| Н5          | 0.147                 | 0.155                 | 0.157                 | 0.169                 | 0.159                 |  |
| H6          | 0.159                 | 0.186                 | 0.184                 | 0.122                 | 0.185                 |  |
| H7          | 0.183                 | 0.169                 | 0.172                 | 0.154                 | 0.178                 |  |
| H8          | 0.145                 | 0.160                 | 0.160                 | 0.183                 | 0.158                 |  |

Table S7 Atomic charges from the Mulliken population analysis. Atom types are shown in Fig. S3.



Fig. S5 Snapshot of three  $CO_2$  molecules encapsulated in a square grid. The configuration was obtained by GCMC simulation at 52 kPa and 195 K.

|        | <u> </u>                 | ELM                               | -11                      | ELM-11              | $ ightarrow 2CO_2$                    |
|--------|--------------------------|-----------------------------------|--------------------------|---------------------|---------------------------------------|
|        | Bond length [nm]         | before optimization               | after optimization       | before optimization | after optimization                    |
|        | Cu-F3                    | 0.240                             | 0.264                    | 0.219               | 0.259                                 |
|        | B-F3                     | 0.143                             | 0.144                    | 0.145               | 0.145                                 |
|        | B-F1                     | 0.137                             | 0.142                    | 0.142               | 0.142                                 |
|        | B-F2                     | 0.136                             | 0.142                    | 0.140               | 0.143                                 |
|        | B-F4                     | 0.147                             | 0.141                    | 0.140               | 0.139                                 |
|        | Cu-N2                    | 0.204                             | 0.204                    | 0.207               | 0.202                                 |
|        | N2-C6                    | 0.137                             | 0.135                    | 0.141               | 0.135                                 |
|        | C6-C7                    | 0.141                             | 0.139                    | 0.140               | 0.139                                 |
|        | C7-C8                    | 0.141                             | 0.140                    | 0.140               | 0.140                                 |
|        | C8-C9                    | 0.148                             | 0.148                    | 0.141               | 0.148                                 |
|        | C9-C10                   | 0.141                             | 0.140                    | 0.138               | 0.140                                 |
|        | C10-C11                  | 0.141                             | 0.139                    | 0.139               | 0.139                                 |
|        | C11-N3                   | 0.137                             | 0.135                    | 0.136               | 0.135                                 |
|        | Cu-N1                    | 0.201                             | 0.201                    | 0.208               | 0.201                                 |
|        | N1-C5                    | 0.138                             | 0.135                    | 0.133               | 0.135                                 |
|        | C5-C4                    | 0.143                             | 0.139                    | 0.142               | 0.139                                 |
|        | C4-C3                    | 0.131                             | 0.141                    | 0.136               | 0.141                                 |
|        | C3-C3                    | 0.148                             | 0.148                    | 0.150               | 0.148                                 |
|        | C3-C2                    | 0.140                             | 0.140                    | 0.135               | 0.140                                 |
|        | C2-C1                    | 0.142                             | 0.138                    | 0.139               | 0.138                                 |
|        | C1-N1                    | 0.134                             | 0.135                    | 0.134               | 0.135                                 |
|        | Cu-N3                    | 0.204                             | 0.206                    | 0.202               | 0.200                                 |
|        | (-)                      |                                   |                          |                     |                                       |
| ł      | (a)<br>5x10 <sup>4</sup> |                                   | (D)                      |                     |                                       |
|        | 4x10 <sup>4</sup>        | R <sub>wp</sub><br>R <sub>i</sub> | = 3.95%<br>= 11.2%       | i                   | $R_{wp} = 3.23\%$<br>$R_{1} = 7.28\%$ |
| ensity | 3x10 <sup>4</sup> -      | S                                 | = 4.01%3x10 <sup>4</sup> |                     | S = 3.28%                             |
| lut    | 2x10 <sup>4</sup> -      | F                                 | _ Ĕ <sub>2x10</sub> ⁴ -  | 11. Minus           |                                       |
|        | 1×104                    | Where When and and                | 1×10 <sup>4</sup>        | Willer mundum       | A                                     |

**Table S8** Comparison of bond lengths before and after the geometry optimization by DFT-D3 method. Atom types are shown in Fig. S3.



1x10

-1x10<sup>4</sup>

y\_o-y\_c

2∂[degree]

20 25 *θ* [degree] 1x10

-1x10<sup>4</sup>

*y*-٫٫



**Fig. S7** (a) Fictitious adsorption isotherms obtained by the GCMC simulations using the structures before (orange) and after (black) the geometry optimization by DFT-D3 method together with the experimental desorption isotherm of  $CO_2$  on ELM-11 at 273 K. (b) The grand potentials of guest obtained by integrating the fictitious adsorption isotherms.

## §2 Structure refinement method based on hybrid reverse Monte Carlo simulation

In this section, we demonstrate the structure refinement method based on hybrid reverse Monte Carlo (MC) simulation, using which the initial structure of closed ELM-11 was determined. In this method, the acceptance probability for an MC trial move,  $P_{acc}$ , is given by

$$P_{acc} = \min\left\{1, \exp\left(\frac{R_{wp,new} - R_{wp,old}}{S} + w\frac{U_{new} - U_{old}}{k_BT}\right)\right\},\tag{S1}$$

where  $R_{wp,new}$  and  $R_{wp,old}$  are the reliability factors of the new and old configuration; S is a scaling factor; w is a weighting factor;  $U_{new}$  and  $U_{old}$  are the total interaction potentials of the new and old configuration;  $k_B$  is the Boltzmann constant; and T is temperature. The reliability factor  $R_{wp}$ , which represents the goodness of fit between the observed and calculated XRPD diagrams, is represented as

$$R_{wp} = 100 \times \sqrt{\frac{\sum_{i}^{i} w_{i} (y_{i} - y_{c,i})^{2}}{\sum_{i}^{i} w_{i} y_{i}}},$$
(S2)

where  $y_i$  is the *i*th intensity of the experimental powder diffraction pattern;  $y_{c,i}$  is the calculated intensity from the structure model; and  $w_i$  is a weighting factor ( $w_i = 1/y_i$  is used conventionally).

**Trial Moves.** Several trial moves based on the symmetry of the space group (C2/c) were performed in the MC simulation. The symmetry axes and points in the ELM-11 structure ( $1 \times 1 \times 1$  unit cell) are shown in Fig. S8. The employed MC moves are as follows: (i) rotation of bpy I about the centre of symmetry located between the pyridine rings; (ii) translation of the centre of mass of bpy II along the twofold axis ( $C_2$ ), rotation of bpy II about the  $C_2$  axis and bond rotation (C–C–C–C torsion) between the pyridine rings of bpy II; (iii) translation of the centre of mass of BF<sub>4</sub> and rotation of BF<sub>4</sub>; and (iv) translation of a Cu atom. The pyridine ring, BF<sub>4</sub>, and CO<sub>2</sub> were treated as rigid bodies during the simulation.



**Fig. S8** Part of the simulation cell of closed ELM-11 for Monte Carlo simulation  $(1 \times 1 \times 1 \text{ unit cell})$ . The translucent atoms are those produced by symmetry operations.

**Interaction Potentials.** The total interaction potentials of ELM-11, *U*, can be divided into a bonded term and a non-bonded term:

 $U = U_{bonded} + U_{nonbonded} = U_{bonded} + U_{Coulombic} + U_{LJ}$ (S3) Two bond stretching terms (Cu–N and Cu–F), two angle bending terms (N–Cu–N and N–Cu–F), and one bond rotation term between the pyridine rings of bpy (C–C–C–C) were considered as components of the bonded potential, and all the remaining degrees of freedom were rigidly constrained. The bond potential functions of each component were adopted from our previous work.<sup>2</sup> The non-bonded term (sum of the Coulombic and LJ potentials) was calculated in the same manner as discussed in the experimental section, except that the LJ size parameter of hydrogen,  $\sigma_{\rm H}$ , was set to be zero to take into account the formation of a hydrogen bond.

**Reliability Factors.** The  $R_{wp}$  factor of the new configuration after an MC step was evaluated using the RIETAN-

2000<sup>3</sup> software package. The split pseudo-Voigt function was used to describe the peak profile of the calculated XRPD pattern, and only the parameters of the profile function were refined before the evaluation of the  $R_{wp}$  factor.

**Parameter Settings.** The *S* factor works in a manner analogous to the way temperature works in the conventional MC simulations. We determined S = 0.03 by trial and error so that the  $R_{wp}$  factor decreases smoothly. The weighting factor of w = 0.036 was used so that the contributions of the energy term and the  $R_{wp}$  term were nearly equal. Temperature was set to 273 K.

We first constructed an initial configuration of closed ELM-11 with the unit cell parameters, which were obtained from the Le Bail fitting to the observed XRPD pattern at 273 K, by deforming and arranging the open framework structure of ELM-11. The initial structure was then relaxed for  $2 \times 10^4$  MC steps by setting w = 0, after which another  $3 \times 10^4$  MC steps were performed by setting w = 0.036. Fig. S9 shows changes in the total potential energy and the  $R_{wp}$  factor of the closed ELM-11 structure during the hybrid reverse MC simulation, which demonstrates that the closed structure of ELM-11 was successfully converged to that having both a low potential energy and a small  $R_{wp}$  value.

We finally chose the closed ELM-11 structure with the smallest  $(R_{wp}/S + wU/T)$  value, which is the exponent of the acceptance probability, as an initial structure model of closed ELM-11 for the Rietveld refinement, as mentioned in the experimental section.



Fig. S9 Total potential energy and the  $R_{wp}$  factor of the closed ELM-11 structure during the hybrid reverse MC simulation.

#### Reference

- 1. Y. F. Chen, J. Y. Lee, R. Babarao, J. Li and J. W. Jiang, J. Phys. Chem. C, 2010, 114, 6602–6609.
- 2. H. Tanaka, S. Hiraide, A. Kondo and M. T. Miyahara, J. Phys. Chem. C, 2015, 119, 11533-11543.
- 3. F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, 321-324, 198-203.