Electronic supplementary information (ESI)

Synthesis and stabilization of a hypothetical porous framework

based on a classic flexible metal carboxylate cluster

Yong-Sheng Wei, Pei-Qin Liao, Jian-Qiang Shen, Wei Xue, Jie-Peng Zhang, * and Xiao-

Ming Chen

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

*To whom correspondence should be addressed.

E-mail: zhangjp7@mail.sysu.edu.cn (J.-P. Zhang)

Complex	1	2	3	
Formula	$C_{84}H_{50}N_{12}Ni_6O_{26}$	$C_{84}H_{51.5}N_6Ni_9O_{41}$	$C_{84}H_{51.5}Fe_{7.5}N_6O_{39.5}$	
Formula weight	1995.62	2329.20	2191.62	
Temperature (K)	150	213	213	
Crystal system	Cubic	Cubic	Cubic	
Space group	Fm-3m	Fm-3m	Fm-3m	
a/Å	41.5216(3)	41.286(2)	41.258(3)	
V/Å ³	71585.0(16)	70375(12)	70230(15)	
Z	16	16	16	
$\rho_{\rm calc} ({\rm g \ cm}^{-3})$	0.741	0.879	0.829	
μ (mm ⁻¹)	1.031	1.453	1.273	
$R_1^a (I > 2\sigma)$	0.0656	0.0628	0.1120	
$wR_2^{\ b}$ (all data)	0.2421	0.2235	0.3774	
GOOF	1.036	1.001	1.065	

 Table S1. Crystallographic Data and Structural Refinements.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|. {}^{b}wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{o}^{2})^{2}]^{1/2}.$

Figure S1(a). Perspective views of the coordination environments in **1**. Hydrogen atoms are omitted for clarity (Thermal ellipsoids are drawn for the asymmetric units with probability 30%). Dashed bonds represent another part of the 2-fold disordered pyridyl group.

Fig. S1(b). Perspective views of the coordination environments in **2**. Hydrogen atoms are omitted for clarity (Thermal ellipsoids are drawn for the asymmetric units with probability 30%). Dashed bonds represent another part of the 2-fold disordered carboxylate groups.

Fig. S1(c). Perspective views of the coordination environments in **3**. Hydrogen atoms are omitted for clarity (Thermal ellipsoids are drawn for the asymmetric units with probability 20%). Dashed bonds represent another part of the 2-fold disordered carboxyl groups.

Fig. S2. XPS spectra of (a) **1**, (b) **2** and (c) **3**.

Table S2. Results of the fitting of the Ni 2p X-ray Photoelectron Spectra.

Compound		Ni(II)		Ni(III)	
	Spectral line	2p _{1/2}	2p _{3/2}	2p _{1/2}	2p _{3/2}
1	Binding Energy (eV)	856.6	874.5	858.0	876.0
	Area (%)	2/3		1/3	
2	Binding Energy (eV)	856.4	874.5	858.2	876.0
	Area (%)	7/9		2/9	

Fig. S3. IR spectrum of as-synthesized and guest-free **1**. The characteristic carbonitrile stretching bands of the 4-pyCN at 2237 cm⁻¹ are highlighted, which indicate that this terminal ligand tend to leave the coordination framework during activation.

Fig. S4. Local coordination structures of (a) $\{Ni_2(na)_4(H_2O)_2\}$ in **2** and (b) $\{Fe(na)_4(H_2O)\}^-$ in **3**. Note that because the pyridyl ends of the na⁻ ligands in these metalloligands are fixed by coordination with the metal ions in the $M_3(\mu_3$ -O/OH)(bdc)_3 networks, the four carboxylate ends cannot adopt the ideal D_{4d} symmetry of the $M_2(RCOO)_4$ paddle wheel structure, which can be judged by the unequal bonding distances of Ni2-O4 and Ni3-O5. Because the high-valence cation Fe(III) has a smaller radius than Ni(II), the Fe2-O4 bonds in $\{Fe(na)_4(H_2O)\}^-$ (1.947 Å) are shorter than the Ni2-O4 bonds in $\{Ni_2(na)_4(H_2O)_2\}$ (1.993 Å). To approach the position for binding Fe(III), the na⁻ ligands need to bend toward the 4-fold symmetry axis, which push O5 away from the 4-fold symmetry axis. The shortest bonding distance will be 2.311 Å if four O5 atoms coordinate with a metal ion (the black sphere at the centre of the square defined by four O5 atoms), which is not suitable for an Fe(III) ion.

Fig. S5. TGA curves of (a) **1**, (b) **2** and (c) **3**.

Fig. S6. Room-temperature PXRD patterns of (a) 1, (b) 2 and (c) 3.

Fig. S7. PXRD patterns of (a) 1, (b) 2, and (c) 3 after heated at different temperatures under N_2 for 30 min.

Fig. S8. Room-temperature PXRD patterns of 3 after different treatments.