Supporting Information

082	081	080	@8-1	@8-2
	171		17-1	
162	0 <u>6</u> 1	060	06-1	16-2
152	151	150	15-1	15-2
942	241	940	Q4=1	Q4=2
132	131	130	020 $\overset{13-1}{\bullet}$	13-2
022	021	020	02-1	02-2
112	111	<u>``1</u>	20 11-1	11-2
002	001	000	00-1	00-2
1-12	1-11	•	1-1-1	1-1-2
0=22	Ø=21	@-20	Ø = 2 = 1	Ø = 2 = 2
1-32	1-31	1-30	1-3-1	1-3-2
Q=42	Q-41	Q=40	Q-4-1	፼=4=2
1-52	1-51	1-50	1-5-1	1-5-2
1-62	0-61	0-60	0-6-1	1-6-2
	1-71		1-7-1	
@-82	0-81	Q-80	0-8-1	0-8-2

Fig. S1. Calculated selected area electron diffraction pattern of the [100] zone, using the final model as input. Overlap occurs at k=2n positions of the reflections of [100] and neighboring zones because of the small reciprocal a^* distance. All reflections with k=2n+1 do not belong to the [100] zone itself, but are also visible here for the same reason as the overlapping k=2n reflections.

Fig. S2. Le Bail decomposition of PXRD profile (see description in the text). Experimental, calculated and difference curves are drawn with solid blue, red and grey lines, Bragg positions are marked with vertical blue bars.

Table S1

Atomic coordinates for $K_{6.4}Nb_{28.2}Ta_{8.1}O_{94.}$ (S.G. *Pbam*, a = 37.461 Å, b = 12.471 Å, c = 3.954 Å) as derived from transmission electron microscopy.

	Wyckoff				
Atom	position	x/a	y/b	z/c	
K1	2d	0.0000	0.5000	0.5000	
K2°	4h	0.0558	0.2000	0.5000	
K3	4h	0.1654	0.0126	0.5000	
K4°	4h	0.2312	0.3207	0.5000	
K5*	4h	0.95892	0.11645	0.5000	
K6*	4h	0.71216	0.89315	0.5000	
K7*	4h	0.62966	0.11454	0.5000	
Nb1/Ta1	4g	0.9290	0.5563	0.0000	
Nb2/Ta2	4g	0.8925	0.3166	0.0000	
Nb3/Ta3	4g	0.9786	0.2908	0.0000	
Nb4/Ta4	4g	0.8982	0.0586	0.0000	
Nb5/Ta5	2a	0.0000	0.0000	0.0000	
Nb6/Ta6	4g	0.8576	0.7781	0.0000	
Nb7/Ta7	4g	0.2338	0.0665	0.0000	
Nb8/Ta8	4g	0.1756	0.4907	0.0000	
Nb9/Ta9	4g	0.1947	0.7633	0.0000	
01	4g	0.0920	0.2850	0.0000	

O2	4g	0.9767	0.6228	0.0000	
O3	4g	0.0582	0.5982	0.0000	
O4	4g	0.8805	0.5120	0.0000	
O5	4g	0.0695	0.8119	0.0000	
O6	4g	0.8809	0.9144	0.0000	
O7	4g	0.5022	0.3433	0.0000	
08	4g	0.9452	0.9801	0.0000	
09	4g	0.1884	0.1227	0.0000	
O10	4g	0.2064	0.9144	0.0000	
011	4g	0.1404	0.8426	0.0000	
O12	4g	0.1681	0.6383	0.0000	
O13	4g	0.1738	0.3319	0.0000	
O14	4g	0.2260	0.4681	0.0000	
O15	4g	0.2458	0.7130	0.0000	
O16	4h	0.8524	0.7908	0.5000	
O17	4h	0.9268	0.5566	0.5000	
O18	4h	0.8804	0.3572	0.5000	
O19	4h	0.9711	0.2678	0.5000	
O20	4h	0.9050	0.0665	0.5000	
O21	2b	0.0000	0.0000	0.5000	
O23	4h	0.2352	0.0798	0.5000	
O24	4h	0.1685	0.4763	0.5000	
O25	4h	0.1847	0.7781	0.5000	

° K^+ in pentagonal channels, positions partially occupied by $Nb(Ta)^{5+}$

* K^+ in trigonal channels, occupation lower than 1

Table S2

Crystal data from refinement against combined X ray and neutron powder diffraction data.

$K_{6.4}Nb_{28.2}Ta_{8.1}O_{94}$	$\beta = 90^{\circ}$
$M_r = 5822.65$	$\gamma = 90^{\circ}$
Orthorhombic, <i>Pbam</i>	$V = 1850.54(63) \text{ Å}^3$
a = 37.4676(90) Å	<i>Z</i> = 1
b = 12.4934(30) Å	neutron radiation, $\lambda = 1.594$ Å
c = 3.95333(15) Å	D_x , g cm ⁻³ = 5.228
$\alpha = 90^{\circ}$	

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
K1/Nb1	0.449 (4)	0.344 (13)	0.5	2.42 (2)*	0.1486(55)/0.0132(55)
K2/Nb2	0.059 (2)	0.170 (6)	0.5	2.42 (2)*	0.7279(71)/0.2813(71)
K3	0.167 (3)	0.003 (8)	0.5	2.42 (2)*	0.4351(92)
K4/Nb4	0.226 (3)	0.332 (8)	0.5	2.42 (2)*	0.2884(92)/0.2804(90)
Nb1/Ta1	0.9300 (18)	0.573 (5)	0	2.42 (2)*	0.669(13)/0.331(13)
Nb2	0.8898 (12)	0.323 (3)	0	2.42 (2)*	1.0
Nb3/Ta3	0.9765 (16)	0.297 (6)	0	2.42 (2)*	0.776(13)/0.224(13)
Nb4/Ta4	0.903 (2)	0.067 (5)	0	2.42 (2)*	0.697(12)/0.303(12)
Nb5/Ta5	0	0	0	2.42 (2)*	0.604(17)/0.396(17)
Nb6/Ta6	0.8574 (19)	0.792 (6)	0	2.42 (2)*	0.670(10)/0.330(10)
Nb7/Ta7	0.2354 (19)	0.072 (5)	0	2.42 (2)*	0.705(13)/0.295(13)
Nb8/Ta8	0.1677 (12)	0.495 (4)	0	2.42 (2)*	0.639(11)/0.361(11)
Nb9/Ta9	0.1911 (18)	0.791 (6)	0	2.42 (2)*	0.714(35)/0.286(35)
01	0.0970 (12)	0.291 (2)	0	2.42 (2)*	1.0
02	0.9817 (7)	0.6092 (16)	0	2.42 (2)*	1.0
O3	0.0559 (5)	0.5794 (18)	0	2.42 (2)*	1.0
O4	0.8822 (5)	0.5011 (14)	0	2.42 (2)*	1.0
05	0.0719 (5)	0.7850 (16)	0	2.42 (2)*	1.0
O6	0.8805 (7)	0.9275 (18)	0	2.42 (2)*	1.0
07	0	0.160 (3)	0	2.42 (2)*	1.0
08	0.9493 (6)	0.991 (2)	0	2.42 (2)*	1.0
09	0.1918 (5)	0.1454 (16)	0	2.42 (2)*	1.0
O10	0.2071 (7)	0.934 (2)	0	2.42 (2)*	1.0
011	0.1407 (6)	0.843 (2)	0	2.42 (2)*	1.0
012	0.1666 (5)	0.6483 (15)	0	2.42 (2)*	1.0
013	0.1687 (5)	0.3438 (15)	0	2.42 (2)*	1.0
014	0.2195 (6)	0.4914 (19)	0	2.42 (2)*	1.0
015	0.2629 (7)	0.207 (4)	0	2.42 (2)*	1.0

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

016	0.8595 (12)	0.788 (3)	0.5	2.42 (2)*	1.0
017	0.9297 (9)	0.578 (3)	0.5	2.42 (2)*	1.0
O18	0.8922 (11)	0.324 (5)	0.5	2.42 (2)*	1.0
019	0.9774 (7)	0.3100 (15)	0.5	2.42 (2)*	1.0
O20	0.9001 (5)	0.0617 (19)	0.5	2.42 (2)*	1.0
O21	0	0	0.5	2.42 (2)*	1.0
O23	0.2374 (8)	0.074 (4)	0.5	2.42 (2)*	1.0
O24	0.1703 (7)	0.488 (2)	0.5	2.42 (2)*	1.0
O25	0.1918 (9)	0.784 (2)	0.5	2.42 (2)*	1.0