Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments

Ismail Khay, Gérald Chaplais, * Habiba Nouali, Guillaume Ortiz, Claire Marichal

and Joël Patarin*

Université de Strasbourg (UdS), Université de Haute Alsace (UHA), CNRS,

Équipe Matériaux à Porosité Contrôlée (MPC), Institut de Science des Matériaux de Mulhouse

(IS2M), UMR 7361, 3 bis rue Alfred Werner, 68093 Mulhouse Cedex, France

* To whom correspondence should be addressed.

Gérald Chaplais. Email: gerald.chaplais@uha.fr. Phone number: +33 3 89 33 68 87 Joël Patarin. Email: joel.patarin@uha.fr. Phone number: +33 3 89 33 68 80

Table of contents

1. Characterisations of materials	1
1.1. X-Ray Diffraction Patterns	1
1.2. Thermogravimetric Analyses	6
1.3. Scanning Electron Microscopy	7
2. Water intrusion-extrusion experiments under high pressure	8
3. References	9

1. Characterisations of materials

1.1. X-Ray Diffraction Patterns

b)

e)

4/9

Figure S1. Experimental (blue) and simulated (black) X-ray diffraction patterns of a) ZIF-8, b) crude and activated ZIF-7, c) ZIF-90, d) Zn(dcim)₂-SALE, e) ZIF-67, f) CdIF-1, g) ZIF-11 and h) ZIF-71 samples. The crystallographic data referenced as OFERUN02 (823083)¹ for ZIF-8, VELVIS01 (602541)² and from ref. ³ for ZIF-7, WOJGEI (693596)⁴ for ZIF-90, from ref. ⁵ for Zn(dcim)₂-SALE, GITTOT01 (671074)⁶ for ZIF-67, GUPBUP (743551)⁷ for CdIF-1, VEJZOA (602545)² for ZIF-11 and GITVIP01 (671081)⁶ for ZIF-71, were used to plot the simulated patterns.

1.2. Thermogravimetric Analyses

Figure S2. TG curves of ZIF-8 (black), activated ZIF-7 (red), ZIF-90 (green), Zn(dcim)₂-SALE (blue), ZIF-67 (cyan), CdIF-1 (magenta), ZIF-11 (dark yellow) and ZIF-71 (purple) samples.

Table S1. Experimental and theoretical mass losses corresponding to the formation of ZnO, Co₃O₄, and CdO after thermal analysis of Zn-, Co- and Cd-based ZIFs.

Samples	Topology	Cation	Linker	Mass loss (%) in the 200- 800°C temperature range	
				Experimental	Theoretical
ZIF-8	SOD	Zn ²⁺	mim	64.3	64.2
ZIF-7		Zn ²⁺	bim	72.0	72.8
ZIF-90		Zn ²⁺	ica	67.8	68.2
Zn(dcim) ₂ -SALE		Zn^{2+}	dcim	85.8	75.9
ZIF-67		Co ²⁺	mim	63.8	63.7
CdIF-1		Cd^{2+}	mim	53.6	53.2
ZIF-11	RHO	Zn ²⁺	bim	72.7	72.8
ZIF-71		Zn ²⁺	dcim	86.0	75.9

1.3. Scanning Electron Microscopy

Figure S3. SEM micrographs of a) ZIF-8, b) ZIF-7, c) ZIF-90, d) Zn(dcim)₂-SALE, e) ZIF-67, f) CdIF-1, g) ZIF-11 and h) ZIF-71 samples.

2. Water intrusion-extrusion experiments under high pressure

Figure S4. Pressure-volume diagrams of the a) "ZIF-7 crude–water", b) "ZIF-7 activated–water", c) "ZIF-90–water", d) "Zn(dcim)₂-SALE–water" and e) "ZIF-11–water" systems. For clarity the diagrams for each system are shifted by 1.0 mL/g along the *y* axis.

3. References

- 1. J. C. Saint Remi, T. Rémy, V. Van Hunskerken, S. van de Perre, T. Duerinck, M. Maes, D. De Vos, E. Gobechiya, C. E. A. Kirschhock, G. V. Baron and J. F. M. Denayer, *ChemSusChem*, 2011, 4, 1074-1077.
- 2. K. S. Park, Z. Ni, A. P. Côte, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi, *Proc. Natl. Acad. Sci. USA*, 2006, **103**, 10186-10191.
- 3. P. Zhao, G. I. Lampronti, G. O. Lloyd, M. T. Wharmby, S. Facq, A. K. Cheetham and S. A. T. Redfern, *Chem. Mater.*, 2014, **26**, 1767-1769.
- 4. W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee and O. M. Yaghi, *J. Am. Chem. Soc.*, 2008, **130**, 12626-12627.
- 5. M. E. Schweinefuss, S. Springer, I. A. Baburin, T. Hikov, K. Huber, S. Leoni and M. Wiebcke, *Dalton Trans.*, 2014, **43**, 3528-3536.
- 6. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi, *Science*, 2008, **319**, 939-943.
- 7. Y.-Q. Tian, S.-Y. Yao, D. Gu, K.-H. Cui, D.-W. Guo, G. Zhang, Z.-X. Chen and D.-Y. Zhao, *Chem. Eur. J.*, 2010, **16**, 1137-1141.