Supplemental Information

Molecular simulation of low temperature argon adsorption in several models of IRMOF-1 with defects and structural disorder

L. Sarkisov^a

1. Forcefield parameters (Universal Force Field¹)

Atom type	σ, Å	ε, Κ
С	3.431	52.80
0	3.118	30.20
Н	2.571	22.14
Ν	3.261	34.70
Zn	2.462	62.38
Ar	3.440	93.27
Au	2.934	19.61

2. Additional simulation details

Iterations, per adsorption point	40·10 ⁶ - 80·10 ⁶
Cut-off (Å)	12.8 (no tail corrections)
	Insertion, deletion,
Type of moves	translation, rotation (for
	non-spherical species)
Weight of each type of move	Equal weight
Iterations used for equilibration	50%
Iterations used for statistical sampling	50%
$\boldsymbol{\alpha}$ and shield parameters for the Fennell-Gezelter	0.1, 1.0

^a Institute for Materials and Processes, School of Engineering, The University of Edinburgh

method ²

K_{MAX} (number of unit cell images in the reciprocal	
space), κ (parameter related to the width of the	
Gaussian function, see	
http://www.iec.northwestern.edu/Music/	15, 6.7
electrostatic/electrostatic.htm)	
for the Ewald method	
xyz dimensions of the system	51.338, 51.338, 51.338
Angles of the unit cell (°)	90.0, 90.0, 90.0

3. Additional details for constant temperature molecular dynamics of gold nanoclusters in IRMOF-1 at ambient temperature

Software	MuSiC ³
Number of time steps	1000000
Time step, ps	0.0002
Integrator	Gear predictor-corrector
Thermostat	Nose-Hoover
Thermostat parameter, Q _{nose} (kcal/mol)	1000
Iterations used for statistical sampling	50%
Temperature, K	300

4. Structure of the Au13 cluster and partial charges from the Mulliken analysis⁴

Atom number	x	У	z	Туре	q, e	
1	0	0	0	Au	-0.012	
2	2.81675	-0.06406	-0.55608	Au	-0.012	
3	0.740504	-0.35438	-2.5232	Au	0.144	

4	3.442945	-0.49098	-3.14435	Au	-0.012	
5	2.209357	1.941327	-2.3734	Au	-0.012	
6	-2.0049	-0.2429	-1.92655 Au		-0.012	
7	-0.72809	-2.65219	-2.7371 Au		-0.012	
8	1.293648	-2.43921	-0.77963 Au		-0.012	
9	-1.21937	-0.62952	-4.54356	-4.54356 Au		
10	0.289067	1.682068	-4.41479	Au	-0.012	
11	-0.52443	2.085102	-1.79024	Au	-0.012	
12	1.504473	-0.7197	-5.1262	Au	-0.012	
13	1.970518	-2.81983	-3.44875	Au	-0.012	

5. Structural characteristics of all systems, considered in this work

	Reference perfect crystal	Percentage of the linkers removed						System with a 20Å mesopore	System with residual DMF	System with gold nanoclus ters
		5	10	20	50	65	73			
Density g/cm ³	0.604	0.593	0.581	0.558	0.481	0.423	0.287	0.428	0.625	0.762
Volume (He) cm³/g	1.358	1.384	1.413	1.472	1.713	1.972	3.089	2.028	1.267	1.053
Surface area (m²/cm³)	2043.91	2046.52	2066.93	2088.48	2137.96	2041.04	1457.04	1519.49	2026.6	2040.11
Surface area (m²/g)	3381.49	3448.83	3556.78	3744.09	4446.09	4820.02	5084.12	3719.05	3242.3	2678.84
Pore limiting diameter (Å)	7.71	7.71	7.71	7.71	8.84	9.93	16.63	21.41	7.52	7.65
D _{max} (Å)	14.95	14.95	14.95	14.95	16.84	19.4	25.67	24.58	14.71	14.85

- 1. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, *Journal of the American Chemical Society*, 1992, 114, 10024-10035.
- 2. C. J. Fennell and J. D. Gezelter, *Journal of Chemical Physics*, 2006, 124.
- 3. A. Gupta, S. Chempath, M. J. Sanborn, L. A. Clark and R. Q. Snurr, *Molecular Simulation*, 2003, 29, 29-46.
- 4. X. Zhang, C. Q. Sun and H. Hirao, *Physical Chemistry Chemical Physics*, 2013, 15, 19284-19292.