A Frustrated Ferrimagnet Cu₅(VO₄)₂(OH)₄ with 1/5 Magnetization Plateau on a New Spin-Lattice of Alternant Triangular Strip and Honeycomb Strip

Su-Yun Zhang, Wen-Bin Guo, Ming Yang, Ying-Ying Tang, Mei-Yan Cui, Nan-Nan Wang, Zhang-Zhen He^{*}

Supporting Information

Table S1. Profile coefficients used for Rietveld refinements of X-ray powder patterns and unit cell parameters and residuals after Rietveld refinements of $Cu_5(VO_4)_2(OH)_4$.

Fig. S1. Simulated and measured XRD powder patterns of Cu₅(VO₄)₂(OH)₄.

Figure S2. The EDS analysis of Cu₅(VO₄)₂(OH)₄.

Figure S3. IR spectrum of Cu₅(VO₄)₂(OH)₄.

Figure S4. TG diagram of Cu₅(VO₄)₂(OH)₄.

Fig. S5. The plot of $d\chi/dT$ showing the magnetic transition.

Figure S6. In-phase AC magnetization χ' versus temperature plot of Cu₅(VO₄)₂(OH)₄ and out-of-phase AC magnetization χ'' versus temperature. The data were collected in a 3 Oe oscillating magnetic field.

Table S1. Profile coefficients used for Rietveld refinements of X-ray powder patternsand unit cell parameters and residuals after Rietveld refinements of $Cu_5(VO_4)_2(OH)_4$.

parameter	optimized value
profile coefficients	
peak width parameter	GU = 0; GV = 15.66; GW = 11.31
peak shape parameter	LX = 0; LY = 17.05
peak asymmetry parameter	S/L = 0.029; H/L = 0.029
sample transparency parameter	trns = -3.81
sample displacement parameter	shft = -1.38
MD Pref Orient	(2 0 0); (2 1 1)
unit cell parameter	a = 5.8364; b = 6.2858; c = 6.8528
	$\alpha = 86.214; \beta = 91.735; \gamma = 92.386$
Refinement residuals	$R_{\rm p} = 0.0532; R_{\rm wp} = 0.0732; \chi^2 = 2.486$

Fig. S1. Simulated and measured XRD powder patterns of Cu₅(VO₄)₂(OH)₄.

Figure S2. The EDS analysis of $Cu_5(VO_4)_2(OH)_4$ confirms the Cu/V/O elemental composition and gives the ration of Cu/V 2.4/1.0.

Figure S4. TG diagram of Cu₅(VO₄)₂(OH)₄.

Fig. S5. The plot of $d\chi/dT$ showing the magnetic transition.

Figure S6. In-phase AC magnetization χ' versus temperature plot of Cu₅(VO₄)₂(OH)₄ and out-of-phase AC magnetization χ'' versus temperature. The data were collected in a 3 Oe oscillating magnetic field.