Supplementary Information

Urea-assisted template method to synthesize mesoporous N-doped

CeO₂ sorbents for CO₂ capture

Yangang Wang,^a Chaochuang Yin,^a Hengfei Qin,^b Yunzhu Wang,^a Yaguang Li,^a Xi Li,^b Yuanhui Zuo,^a Shifei Kang,^{*a} Li-Feng Cui^{*a}

Experimental Section

Synthesis of mesoporous N-doped CeO₂: Mesoporous N-doped CeO₂ (M-NCeO₂) material was synthesized as follows. Typically, 10 g of urea and 1.0 g of cerium nitrate hexahydrate (Ce(NO₃)₃•6H₂O) were dissolved in distilled water, after stirring for several minutes, the mixture was put into oven and dried for a night to evaporate water at 60 °C. Finally, the powders were collected and placed into an alumina crucible with a cover to heat at 550 °C for 2 h in the muffle furnace under air atmosphere with a rate of 15 °C/min.

Synthesis of ordered mesoporous CeO₂: The ordered mesoporous CeO₂ was synthesized as the reported procedure.¹ In a typical synthesis process, 12 mmol of Ce(NO₃)₃•6H₂O was dissolved into 15 ml of acetone. After the solution became clear, 2 g of SBA-15 hard template was added and the mixture was stirred for 2 h in a beaker, then the mixture was transferred to a clean flat Petri dish and the solvent was evaporated. In order to obtain higher loadings, the above dried hybrid powder was calcined at 200 °C for 6h to decompose the metal precursors, and then the impregnation step was repeated, but the amount of precursor was reduced to 2/3 compared to the first step. The resulting products were calcined in the muffle furnace

at 500 °C for 4h with a heating ramp of 2K/min to decompose the inorganic precursor. Finally, the silica template was removed using a 2M NaOH aqueous solution and this etching process was repeated for three times. The resulting material is denoted as OM-CeO₂.

Structural Characterization: Wide-angle X-ray diffraction patterns were collected in θ -2 θ mode using Bruker D8 Advance diffractometer (Cu K α 1 radiation, λ =1.5406 Å), operated at 40 kV and 40 mA (scanning step: 0.02 °/s). Transmission electron microscope (TEM) images were taken using a JEOL JEM-2010 electron microscope with an acceleration voltage of 200 kV. The Brumauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. The pore size distributions were derived from the desorption branches of the isotherms using the Barrett-Joyner-Halanda (BJH) method. Before carrying out the measurement, each sample was degassed at 200 °C for more than 2 h. Fourier-transform infrared (FT-IR) spectra $(800-4000 \text{ cm}^{-1} \text{ with a resolution of } 0.4 \text{ cm}^{-1})$ of the samples (1 wt% sample + 99 wt%)KBr) were obtained on a Bruker Vertex 70 spectrometer. X-ray photoelectron spectroscopy (XPS) measurement was carried out on a RBO upgraded PHI-5000C ESCA system (Pekin Elmer) using monochromated Al K α X-rays (hv = 1486.6 eV) as a radiation at 250 W. All binding energies were calibrated by using the contaminant carbon (C_{1S} = 284.6 eV) as a reference.

CO₂ capture behaviors test: The CO₂ capture behaviors of the CeO₂ materials were measured by a STA 8000 thermal gravimetric analyzer (TGA) under ambient pressure as follows: 10-20 mg of the sample was loaded into an alumina pan, heated to 250 °C and held at this temperature in flowing Ar (25 mL/min) for 120 min to remove physisorbed moisture and other gas, the temperature was then decreased (10 °C/min) and equilibrated at 30 °C. Adsorption was started by switching the gas to pure CO₂ (25 mL/min), and the temperature was maintained at 30 °C for 20 min. Desorption of CO₂ was performed by heating the sample to 250 °C with a ramp of 10 °C /min, keeping for 120 min and then decreasing to 30 °C under Ar atmosphere. The cycles of adsorption and desorption were repeated in order to test the ability of the sorbents to retain their CO₂ sorption capacity. In the case of adsorption–desorption cycles, after adsorption was saturated, the samples were heated at 250 °C in Ar atmosphere and the CO₂ was desorbed, then cooled down to 30 °C, and allowed to adsorb CO₂ again for 20 min. This process was repeated for fifteen runs to evaluate any changes in CO₂ uptake.

Fig S1. EDX spectrum of the M-NCeO₂ sample.

Fig S2. (a) XRD patterns, (b) N_2 adsorption–desorption isotherm and corresponding pore size distribution curve (inset), and (c, d) TEM images of the OM-CeO₂.

Fig S3. Raman spectra of the M-NCeO₂, P-CeO₂, and OM-CeO₂.

Ce³⁺/(Ce³⁺+Ce⁴⁺) % Surface area Pore volume Sample Pore size (m^2/g) (cm^{3}/g) (XPS analysis) (nm) P-CeO₂ 51.2 0.470 21.2 8.46 M-NCeO₂ 124.8 3.40 0.523 28.9 OM-CeO₂ 126.4 3.35 0.305 21.6

Table S1. Textural properties and summary of the XPS data for M-NCeO₂, P-CeO₂,

Reference

and OM-CeO₂.

1. Y. G. Wang, F. Wang, Y. T. Chen, D. F. Zhang, B. Li, S. F. Kang, X. Li and L. F. Cui, *Appl. Catal.*, *B*, 2014, 147, 602-609.