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Introduction 
The following is a step-by-step derivation of the character of Γ(𝑚) − Γ(𝑠) for the pcb 

assembly. The interested reader is also advised to try the examples in the original papers
1-3

 by 

Guest and Fowler. 

Stage 1: Build Contact polyhedra 

 

 
Figure S1: Contact polyhedra for the pcb motif. The vertices represent the two types of bodies, discs for SBU, rectangle for 

ligands (still simply treated as points for symmetry operations). The solid lines are the edges of the polyhedron and represent 

the hinges. They are decorated by segment in dashed line indicating the axis of the hinges. 

 

The first step consists in generating what Fowler and Guest call the contact polyhedron (C). 

This 3D graph has vertices (v) that correspond to the bodies of the system, and edges (e) that 

correspond to the joints (hinges for carboxylate MOFs). C is not always an actual polyhedron 

and is certainly not unique but it is generally straightforward to produce one. Figures S1 

displays the contact polyhedra for a pcb assembly (non-periodic). 

 

Stage 2: Identify space group 
At the second step, the point group G(C) of the contact polyhedra that also respects the axes 

of the hinges is determined. This is why it is actually useful to decorate C with segment 

representing such axes at the first stage. The space group of the pcb contact polyhedra is D4h, 

and its character table is given in table S1. 

Table S1: Character table for Group D4h 
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Stage 3: 𝚪𝑻 + 𝚪𝑹 
The third step is very simple: the representation Γ𝑇 + Γ𝑅 is read from the character table of 

G(C). For several symmetries (at least all improper ones), its character is zero, which is 

important to note in order to avoid unnecessary labour for some other representations. 

Here, 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ𝑇 + Γ𝑅 6 2 -2 -2 -2 0 0 0 0 0 

 

Stage 4: 𝚪(𝒗, 𝑪) and 𝚪∥(𝒆, 𝑪) 
For the fourth step, the characters for the remaining representations in the first term of 

equation (9) are determined by inspection on C. For a given symmetry operation, the 

character of Γ(𝑣, 𝐶) is the number of nodes (points) of C that are unshifted.  

 

Fig S2: Nodes of C and symmetry operations for Γ(𝑣, 𝐶) 

D 4h E 2C 4 C 2 2C 2' 2C 2'' i 2S 4 σ h 2σ v 2σ d

A 1g 1 1 1 1 1 1 1 1 1 1 x
2 

+ y
2
, z

2

A 2g 1 1 1 -1 -1 1 1 1 -1 -1 R z

B 1g 1 -1 1 1 -1 1 -1 1 1 -1 x
2
 - y

2

B 2g 1 -1 1 -1 1 1 -1 1 -1 1 xy

E g 2 0 -2 0 0 2 0 -2 0 0 (R x , R y ) (xz , yz )

A 1u 1 1 1 1 1 -1 -1 -1 -1 -1

A 2u 1 1 1 -1 -1 -1 -1 -1 1 1 z

B 1u 1 -1 1 1 -1 -1 1 -1 -1 1

B 2u 1 -1 1 -1 1 -1 1 -1 1 -1

E u 2 0 -2 0 0 -2 0 2 0 0 (x , y ) 
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As seen in fig. S2 for pcb, C contains 10 nodes, of two types. The C2 and C4 rotations shift all 

but two nodes, hence a character of 2. The two other types of rotations shift all nodes, and 

have a character of 0, and the remaining symmetries are not required due to the zeroes of 

Γ𝑇 + Γ𝑅. Therefore, 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ(𝑣, 𝐶) 10 2 2 0 0 - - - - - 

 

The character of Γ∥(𝑒, 𝐶) is the number of vectors along the edges of C that are unshifted 

minus the number of vectors that are inverted on their edge. 

 

Fig S3: Edges of C and Symmetry operations for Γ∥(𝑒, 𝐶) 

 

As seen in fig. S3 for pcb, C contains 12 edges, of two types. The C2 and C4 rotations shift all 

edges, hence a character of 0. The C’2 rotation inverts two edges for a character of -2. The 

C”2 rotation shift all edges, and has a character of 0, and the remaining symmetries are not 

required due to the zeroes of Γ𝑇 + Γ𝑅. Therefore, 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ∥(𝑒, 𝐶) 12 0 0 -2 0 - - - - - 

 

Γ0 is the trivial representation with a character of 1 for all symmetries. 

Stage 5: 𝚪𝒇  

The fifth step is the most difficult, conceptually, and because it does not benefit from the 

zeroes of Γ𝑇 + Γ𝑅. For MOFs with hinges perpendicular to the ligand, the characters of the 



5 

 

representation of the freedoms Γ𝑓 can be obtained from the fact that for each symmetry 

operation, the character of the hinge 𝜒ℎ𝑖𝑛𝑔𝑒  is the product of the character 𝜒𝑅  of a rotation 

(axial vector, pseudovector) on the hinge axis by the character 𝜒∥𝑒  of a (radial) vector on the 

edge e. 

Most rotations and improper rotations actually shift the edges and have a character of 0, with 

the exception of C’2 which inverts two edges, as seen in fig. S4 (𝜒∥𝑒 = −1). But C’2 also 

inverts the rotation vectors (𝜒𝑅 = −1), so the resulting character is actually positive, at 2. 

 

Fig S4: Effects of C’2 for Γ𝑓  

 

The inversion and dihedral mirror also shifts all edges, and have a character of 0. This is not 

the case for the 𝜎𝑣 and 𝜎ℎ mirrors. 

 

Fig S5: Effects of 𝜎𝑣 for Γ𝑓  

 

Fig. S5 shows that 𝜎𝑣 keeps six edges unchanged (𝜒∥𝑒 = 1), and that the rotations having 

their axes perpendicular to the mirror plane are also unchanged (𝜒𝑅 = 1), for a character of 

6. 
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Fig S6: Effects of 𝜎ℎ for Γ𝑓  

 

Fig. S6 shows that 𝜎ℎ inverts four edges (𝜒∥𝑒 = −1), and that the rotations having their axes 

in the mirror plane are also inverted (𝜒𝑅 = −1), for a character of 4. Then 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ𝑓 12 0 0 2 0 0 0 4 6 0 

 

Stage 5: projecting the irrep 
Finally, the various additions, subtractions and multiplications can be applied to the 

representations to obtain Γ(𝑚) − Γ(𝑠), which can then be projected onto the irreps. We used 

spreadsheets developed by Niece
4
 to speed up these routine tasks. 

Table S2: Character table for the calculations 

𝐷4ℎ 𝐸 2𝐶4 𝐶2 2𝐶2
′ 2𝐶2

′′ 𝑖 2𝑆4 𝜎ℎ 2𝜎𝑣 2𝜎𝑑 

Γ(𝑣, 𝐶) 10 2 2 0 0 - - - - - 

−           
Γ∥(𝑒, 𝐶) 12 0 0 -2 0 - - - - - 

−           

Γ0 1 1 1 1 1 - - - - - 

= -3 1 1 1 -1 - - - - - 

×           

Γ𝑇 + Γ𝑅 6 2 -2 -2 -2 0 0 0 0 0 

= -18 2 -2 -2 2 0 0 0 0 0 

+           

Γ𝑓 12 0 0 2 0 0 0 4 6 0 

= Γ(𝑚)
− Γ(𝑠) -6 2 -2 0 2 0 0 4 6 0 

Γ(𝑚) − Γ(𝑠) = [𝐴1𝑔] − 𝐴2𝑔 − 𝐵2𝑔 − 𝐸𝑔 − 𝐴1𝑢 − 2𝐵1𝑢 
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