Supporting Info

Synthesis and Thermal Stability of Perovskite Alkali Metal Strontium Borohydrides

Kasper. T. Møller¹, Morten. B. Ley^{1,2}, Pascal Schouwink³, Radovan Černý³, Torben. R. Jensen^{1*}

¹Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark

2Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

³ Laboratory of Crystallography, DQMP, University of Geneva, CH-1211 Geneva, Switzerland

*Corresponding Author Torben R. Jensen, Dr. Scient, Associate Professor Center for Materials Crystallography iNano and Department of Chemistry Langelandsgade 140 D-8000 Aarhus C Aarhus University

Denmark

Figure S1. *In situ* SR-PXD data of the NaBH₄–Sr(BH₄)₂ (1:1) composite measured from RT to 500 °C ($\Delta T/\Delta t = 10$ °C/min, p(Ar) = 1 bar, $\lambda = 1.1037$ Å). Symbols: NaBH₄ (grey square), Sr(BH₄)₂ (white circle), WC (black five pointed star), Unknown **5** (black square), Unknown **6** (grey triangle), Unknown **7** (black triangle).

Initially, $Sr(BH_4)_2$, $NaBH_4$ and WC are present. Around 250 °C, intensity from $Sr(BH_4)_2$ decreases while new peaks belonging to **5** arises. Around 320 °C reflections from $Sr(BH_4)_2$ disappear while Bragg peaks from **5** disappear at 360 °C. No diffraction from SrB_6 or SrH_2 is identified. Instead, Bragg peaks belonging to **6** appear between 360 and 400 °C when finally reflections from **7** shows up and is present until the end of the measurement.

Figure S2. PXD pattern of KBH₄ – Sr(BH₄)₂ (1:1) after decomposition at T = 550 °C and $p(H_2) = 1$ bar ($\lambda = 1.54056$ Å). Symbols: KBH₄ (white hexagon), SrH₂ (white square), SrB₆ (white diamond), WC (black five pointed star), Unknown **8** (black arrow).

An unknown (8) compound is present at $2\theta = 16.4$, 26.9, 28.5, 32.6, 33.3, 35.0 and 41.0° (d = 5.38, 3.31, 3.12, 2.74, 2.69, 2.55 and 2.19 Å).

Figure S3. PXD pattern of RbBH₄ – Sr(BH₄)₂ (1:1) after decomposition at 550 °C T = 550 °C and $p(H_2) = 1$ bar ($\lambda = 1.54056$ Å). Symbols: RbBH₄ (grey hexagon), SrH₂ (white square), SrB₆ (white diamond), WC (black five pointed star), Unknown **9** (white arrow).

An unknown (9) compound is present at $2\theta = 24.1$, 27.1, 32.5 and 33.3 (d = 3.69, 3.29, 2.74 and 2.68 Å). The reflections at d = 2.74 and 2.68 are similar to those unknown in **KSr**, hence the unknown compound probably contains Sr. However, it has not been possible to identify the compound.

Figure S4. PXD pattern of CsBH₄ – Sr(BH₄)₂ (1:1) after decomposition at T = 550 °C and $p(H_2) = 1$ bar ($\lambda = 1.54056$ Å). Symbols: CsBH₄ (black hexagon), SrH₂ (white square), SrB₆ (white diamond), WC (black five pointed star), Unknown **10** (grey arrow).

An unknown (10) compound is present at $2\theta = 27.0$ and 32.4° (d = 3.29 and 2.76).

Figure S5. FT-IR of KBH₄ – Sr(BH₄)₂ (1:1) after decomposition at 550 °C (black curve) and hydrogenation at 350 °C and $p(H_2) = 100$ bar (red curve).

Figure S6. FT-IR of RbBH₄ – Sr(BH₄)₂ (1:1) after decomposition at 550 °C (black curve) and hydrogenation at 350 °C at $p(H_2) = 100$ bar (red curve).

Figure S7. FT-IR of CsBH₄ – Sr(BH₄)₂ (1:1) after decomposition at 550 °C (black curve) and hydrogenation at 350 °C at $p(H_2) = 100$ bar (red curve).

Figure S8. Sieverts measurement of KBH₄ – Sr(BH₄)₂ (1:1) showing the two desorptions conducted in the temperature range RT – 550 °C ($\Delta T/\Delta t = 3$ °C/min and $p(H_2) = 1$ bar).

Figure S9. Sieverts measurement of RbBH₄ – Sr(BH₄)₂ (1:1) showing the two desorptions conducted in the temperature range RT – 550 °C ($\Delta T/\Delta t = 3$ °C/min and $p(H_2) = 1$ bar).

Figure S10. Sieverts measurement of CsBH₄ – Sr(BH₄)₂ (1:1) showing the two desorptions conducted in the temperature range RT – 550 °C ($\Delta T/\Delta t = 3$ °C/min and $p(H_2) = 1$ bar).