A Dy₂ Single-Molecule Magnet with the benzoate anions and

phenol-O⁻ bridging groups

Hongshan Ke,^{‡a} Sheng Zhang,^{‡a} Xin Li,^a Qing Wei,^a Gang Xie,^a Wenyuan wang,^a Sanping Chen^{*a}

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, PR China

‡ These authors have equal contribution to this work.

Corresponding authors Dr. Sanping Chen E-mail address: sanpingchen@126.com

Compound	1
Empirical formula	$C_{62}H_{62}Dy_2N_8O_{22}\\$
Formula weight	1596.20
Temperature	296(2) K
Crystal system	Monoclinic
space group	$P2_1/c$
<i>a</i> (Å)	13.432(2)
<i>b</i> (Å)	10.503(2)
<i>c</i> (Å)	24.428(4)
α (°)	90
β (°)	98.478(4)
γ (°)	90
$V(\text{\AA}^3)$	3408.9(11)
Z	2
F(000)	1596
Goodness-of-fit on F^2	1.577
	$R_1 = 0.1549$
Final R indices [1>2sigma(1)]	$wR_2 = 0.2116$
	$R_1 = 0.1904$
<i>R</i> indices (all data)	$wR_2 = 0.2222$
CCDC	1421395

 Table S1. Crystal data and structure refinement details for the compound 1.

Table S2. Selected bond lengths (Å) and angles (°) for 1.

Compound 1			
Dy(1)-O(8)#1	2.322(12)	O(3)-Dy(1)-O(2)	74.4(4)
Dy(1)-O(4)	2.341(12)	O(7)-Dy(1)-O(2)	71.5(4)
Dy(1)-O(3)	2.349(12)	O(4)#1-Dy(1)-O(2)	99.1(4)
Dy(1)-O(7)	2.401(14)	O(8)#1-Dy(1)-O(6)#1	73.8(5)
Dy(1)-O(4)#1	2.421(11)	O(4)-Dy(1)-O(6)#1	133.8(4)
Dy(1)-O(2)	2.439(12)	O(3)-Dy(1)-O(6)#1	71.6(4)
Dy(1)-O(6)#1	2.502(14)	O(7)-Dy(1)-O(6)#1	114.4(5)
Dy(1)-O(1)	2.503(12)	O(4)#1-Dy(1)-O(6)#1	63.5(4)
Dy(1)-N(1)	2.563(15)	O(2)-Dy(1)-O(6)#1	71.3(5)
O(4)-Dy(1)#1	2.421(11)	O(8)#1-Dy(1)-O(1)	139.9(4)
O(6)-Dy(1)#1	2.502(14)	O(4)-Dy(1)-O(1)	105.4(4)
O(8)-Dy(1)#1	2.322(12)	O(3)-Dy(1)-O(1)	74.0(4)
N(5)-C(34)	1.276(19)	O(7)-Dy(1)-O(1)	69.8(4)
O(8)#1-Dy(1)-O(4)	76.3(4)	O(4)#1-Dy(1)-O(1)	137.9(4)
O(8)#1-Dy(1)-O(3)	76.5(4)	O(2)-Dy(1)-O(1)	53.0(4)
O(4)-Dy(1)-O(3)	133.0(4)	O(6)#1-Dy(1)-O(1)	120.2(4)
O(8)#1-Dy(1)-O(7)	143.0(4)	O(8)#1-Dy(1)-N(1)	73.5(4)

O(4)-Dy(1)-O(7)	73.1(4)	O(4)-Dy(1)-N(1)	70.8(4)	
O(3)-Dy(1)-O(7)	140.5(4)	O(3)-Dy(1)-N(1)	65.0(4)	
O(8)#1-Dy(1)-O(4)#1	82.2(4)	O(7)-Dy(1)-N(1)	114.4(5)	
O(4)-Dy(1)-O(4)#1	78.2(4)	O(4)#1-Dy(1)-N(1)	144.2(4)	
O(3)-Dy(1)-O(4)#1	134.0(4)	O(2)-Dy(1)-N(1)	116.5(4)	
O(7)-Dy(1)-O(4)#1	71.6(4)	O(6)#1-Dy(1)-N(1)	130.2(5)	
O(8)#1-Dy(1)-O(2)	139.9(4)	O(1)-Dy(1)-N(1)	69.7(4)	
O(4)-Dy(1)-O(2)	143.4(4)			
Symmetry transformations used to generate equivalent atoms:				
#1 -x,-y+1,-z+1				

Table S3. Dy^{III} ion geometry analysis by SHAPE 2.1 software.

PtL4 structures 4 C3v 5 C4v 6 C4v 7 C4v 8 C4v 9 D3h 10 D3h JTC-9 Johnson triangular cupola J3 Capped cube J8 JCCU-9 CCU-9 JCSAPR-9 Spherical-relaxed capped cube Capped square antiprism J10 Spherical Capped square antiprism Tricapped trigonal prism J51 Spherical tricapped trigonal prism CSAPR-9 JTCTPR-9 TCTPR-9 JTC-9 16.102, JCCU-9 9.664, Structure [ML9] ABOXIY JCSAPR-9 2.169, CSAPR-9 1.408, JTCTPR-9 3.318, TCTPR-9 1.579 CCU-9 8.554,

Configuration	ABOXIY
Johnson triangular cupola (C_{3v})	16.102
Capped cube (C_{4v})	9.664
Spherical-relaxed capped cube (C_{4v})	8.554
Capped square antiprism (C_{4v})	2.169
Spherical capped square antiprism (C_{4v})	1.408
Tricapped trigonal prism (D_{3h})	3.318
Spherical tricapped trigonal prism (D_{3h})	1.579

Scheme S1. An *ORTEP* view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. Only one position of the disordered solvent methanol molecule is shown for clarity. (Copied from the Ref. M. M. Sow, Ou. Diouf, M. Seck, A. H. Barry, M. Gaye. Acta Cryst. (2014). E70, o423.)

Figure S1. XRPD curve of 1.

Figure S2. The Dy₂ unit bridged by two oxygen atoms with $\mu_1:\eta^2$ coordination mode and the two carboxylic groups in the form of $\mu_2:\eta^1,\eta^2$.

Figure S3. Temperature dependences of χ'_{M} (top) and χ''_{M} (bottom) of **1** measured at 1000 Hz without external applied dc field.

Figure S4. Simulations of dynamical susceptibility $\chi(\omega)$ ranging from 1.9 to 8.0 K in a Cole-Cole diagram. Red lines were performed using the sum of two modified Debye functions with the fitting parameters in Table S3.

<i>T</i> (K)	$\Delta \chi_1$	$\Delta \chi_2$	α_1
	(cm ³ mol ⁻¹)	(cm ³ mol ⁻¹)	
1.9	4.998	0.628	0.236
2.2	5.119	0.600	0.239
2.5	5.120	0.710	0.220
3.0	5.000	0.578	0.253
3.5	4.790	0.470	0.277
4.0	4.470	0.840	0.196
4.5	4.202	1.108	0.123
5.0	3.960	1.203	0.117
6.0	3.540	1.306	0.107
7.0	3.201	0.782	0.209
8.0	2.900	0.834	0.240

Table S4. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data.