$Pd-Co_3[Co(CN)_6]_2$ hybrid nanoparticles: Preparation, Characterization, and Challenging for the Suzuki–Miyaura coupling of aryl chlorides under mild conditions

Ren Li*a, Ran Lia, Changlai Wanga, Lei Gaob, and Qianwang Chen*ab

^{*a*}Hefei National Laboratory for Physical Sciences at Microscale and Department of Materials Science & Engineering, & Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science and Technology of China, Hefei 230026, China

^bHigh Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

 Table S1 Catalytic performance of different Pd-Based catalysts in the coupling reaction of chlorobenzene and phenylbronic acid in recent two years.

Entry	catalyst	solvent	time (h)	temp	yield	ref
				(0)	(70)	
1	Poly-NHC-2–Pd2	EtOH/H2O (3:2)	3	80	100	1
2	PdNPs) H2P-CMP	TBAB-H2O	12	80	96	2
3	Zwitterionic Palladium Complexes	1,4-dixoxane/H2O (1:4).	12	r.t.	33	3
4	HT-Pd(0)	H2O	4.5	100	95	4
5	2-(3-sulfonatomesityl)-5- sulfonatoindenyl) dicyclohexylphosphine hydrate-Pd(OAc) ₂ sodium salt	H2O	24	100	78	5
6	Pd@[C12,C12–Im]Cl	H2O/p-dioxane (1:1)	10min	r.t.	94	6
7	PdCl ₂ -L5	DMF	2	130	95	7
8	Cyclometalated-2- Phenylimidazole Palladium Carbene Complexes	EtOH	1	60	96a	8
9	Pd/PPhen solid composite	H_2O	3	80	82	9
10	Pd(II) doped UiO-67	EtOH	20	100	90	10
11	palladium complexes 5h	dioxane	1	80	70	11
12	GO-NHC-Pd	DMF-H ₂ O(1:1)	1	80	65	12
13	monoligated imine–Pd– NHC complexes	$PrOH/H_2O = 10:1$	2	80	98	13
14	Palladium(II)-N- heterocyclic carbene complexes	DMF/H2O (1:1)	3	50	93	14
15	[Pd(OAc)2]- Resorcinarenvl-Phosphines	DMF	1	100	97	15
16	Pd/Fe3O4@SiO2@KCC-1	NMP	12	140	83	16
17	CoAl-LDH/Pd	EtOH	2	80	66	17
18	$Pd-Co_3[Co(CN)_6]_2$	EtOH	2	80	86	This work

Entry	catalyst	solvent	time (h)	temp	yield
				(°C)	(%)
1	$Pd-Co_3[Co(CN)_6]_2$	EtOH	2	80	86
2	$Co_3[Co(CN)_6]_2@Pd$	EtOH	2	80	32
3	$Pd_xCo_{3-x}[Co(CN)_6]_2$	DMF	4	90	76
4	$Pd-Fe_{3}O_{4}@C^{[18]}$	DMF	4	100	82

Table 2. Catalytic Performance of Different Pd-Based Catalysts in the Coupling Reaction of chlorobenzene and Phenylbronic Acid

Figure 1. a) XRD pattern of $Co_3[Co(CN)_6]_2$ @Pd after reaction, b) TEM image of large scale Pd-Co_3[Co(CN)_6]_2 NPs after reaction.

Figure 2. a) XRD pattern of Co₃[Co(CN)₆]₂@Pd, b) XPS spectrum of Pd 3d spectrum in Co₃[Co(CN)₆]₂@Pd

Figure 3. TEM image of Co₃[Co(CN)₆]₂@Pd NPs.

Figure 4. TEM image of large scale Pd-Co₃[Co(CN)₆]₂ NPs.

Synthesis of Co₃[Co(CN)₆]₂@ Pd NPs

 $0.01 \text{ g of } \text{Co}_3[\text{Co}(\text{CN})_6]_2$ was dissolved in 20 ml water solution. 0.3 g lysine was added to solution with stirring 30mins, then 10ml palladium chloride water solution (1g/L) was slowly added into the above mixture solution followed by 1 ml 0.1M NaBH4 solution was added to the solution quickly. About half hour later, the solid products were collected by centrifuging and were washed with water several times. The products were dried in vacuum.

REFERENCES

(1) S. Xu, K. Song, T. Li and B. Tan, J. Mater. Chem. A, 2015, 3, 1272.

- (2) N. Huang, Y. Xu and D. Jiang, Sci. Rep., 2014, 4, 7228
- (3) J.-Y. Lee, D. Ghosh, J.-Y. Lee, S.-S. Wu, C.-H. Hu, S.-D. Liu and H. M. Lee, Organometallics, 2014, 33, 6481.
- (4) M. I. Burrueco, M. Mora, C. Jiménez-Sanchidrián and J. R. Ruiz, Appl. Catal., A, 2014, 485, 196.

(5) H. Peng, Y.-Q. Chen, S.-L. Mao, Y.-X. Pi, Y. Chen, Z.-Y. Lian, T. Meng, S.-H. Liu and G.-A. Yu, Org. Biomol. Chem., 2014, 12, 6944.

- (6) J.-T. Lu, J. C. Y. Lin, M.-C. Lin, N. D. Khupse and I. J. B. Lin, Langmuir, 2014, 30, 10440.
- (7) S. J. Sabounchei and A. Hashemi, Inorg. Chem. Commun., 2014, 47, 123.
- (8) M. Micksch, M. Tenne and T. Strassner, Organometallics, 2014, 33, 3966.

(9) F. Wang, J. Mielby, F. H. Richter, G. Wang, G. Prieto, T. Kasama, C. Weidenthaler, H.-J. Bongard, S. Kegnæs, A. Fürstner and F. Schüth, Angew. Chem. Int. Edit., 2014, 53, 8645.

- (10) L. Chen, S. Rangan, J. Li, H. Jiang and Y. Li, Green Chem., 2014, 16, 3978.
- (11) M. Teci, E. Brenner, D. Matt, C. Gourlaouen and L. Toupet, Dalton Trans, 2014, 43, 12251.
- (12) J. H. Park, F. Raza, S.-J. Jeon, H.-I. Kim, T. W. Kang, D. Yim and J.-H. Kim, Tetrahedron Lett., 2014, 55, 3426.
- (13) A. Shen, C. Ni, Y.-C. Cao, H. Zhou, G.-H. Song and X.-F. Ye, Tetrahedron Lett., 2014, 55, 3278.
- (14) S. Çekirdek, S. Yaşar and İ. Özdemir, Appl. Organomet. Chem., 2014, 28, 423.
- (15) L. Monnereau, H. El Moll, D. Sémeril, D. Matt and L. Toupet, Eur. J. Inorg. Chem., 2014, 2014, 1364.
- (16) X. Le, Z. Dong, Y. Liu, Z. Jin, T.-D. Huy, M. Le and J. Ma, J. Mater. Chem. A, 2014, 2, 19696.

(17) P. Li, P.-P. Huang, F.-F. Wei, Y.-B. Sun, C.-Y. Cao and W.-G. Song, J. Mater. Chem. A, 2014, 2, 12739.