Comprehending the effect of $MMoO_4$ (M = Co, Ni) nanoflakes on improving the electrochemical performance of NiO electrodes

Lei An^a[†], Wenyao Li^{a,b}[†], Yunjiu Cao^{a,c}, Kaibing Xu^a, Rujia Zou^{a,d} Tao Ji^{a,c}, Li Yu^{a,e} and Junqing Hu^a*

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620,
China.

^b School of Material Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China.

^c School of Fundamental Studies, Shanghai University of Engineering Science,
Shanghai 201620, China.

^d Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong.

^e Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA
5095, Australia.

E-mail: hu.junqing@dhu.edu.cn

[†] These authors contributed equally to the work.

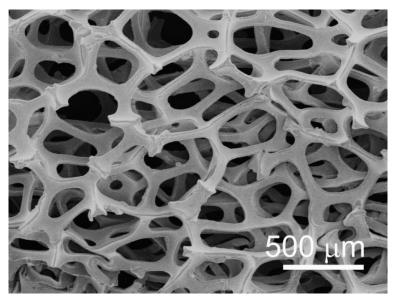


Fig. S1 SEM image of Ni foam.

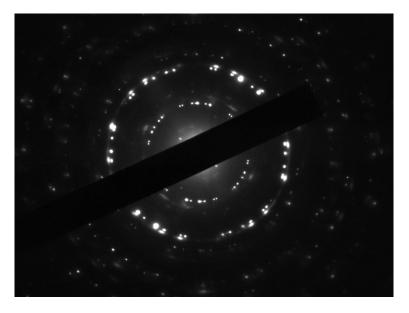


Fig. S2 The SAED image of the NiO nanosheets.

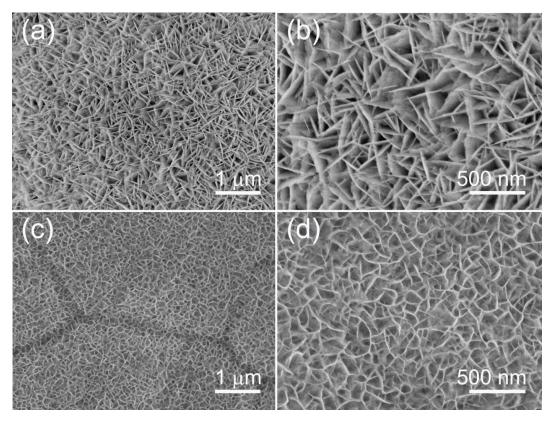


Fig. S3 Low- and high- SEM images of (a, b) CoMoO₄ and (c, d) NiMoO₄ nanoflakes directly grown on the Ni foam, respectively.

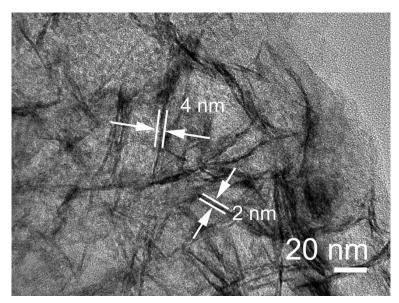


Fig. S4. TEM image of the NiO@NiMoO₄ hybrid composites, showing the ultrathin nature of NiMoO₄ nanoflakes.

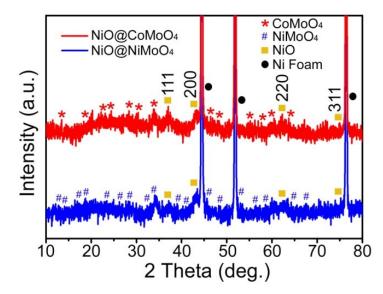
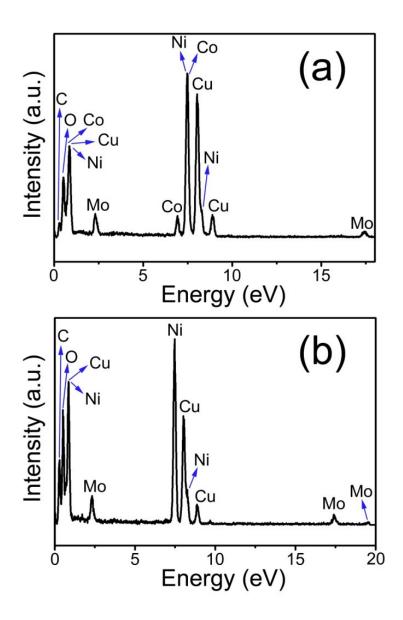



Fig. S5 XRD patterns of NiO@CoMoO₄ and NiO@NiMoO₄ hybrid composites on Ni foam.

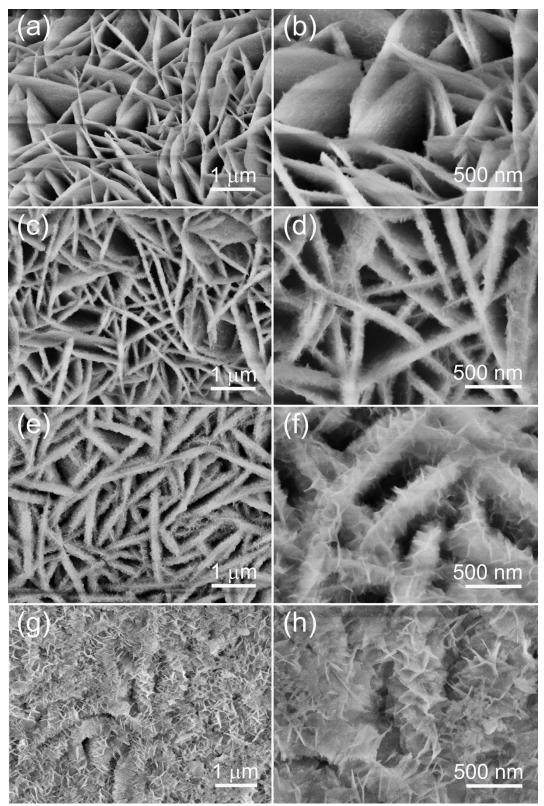


Fig. S6 EDX patterns of the (a) NiO@CoMoO₄ and (b) NiO@NiMoO₄ hybrid composites, respectively.

Fig. S7 SEM images of the morphology evolution of NiO@NiMoO₄ hybrid heterostructures at different reaction times. (a, b) 0.5 h, (c, d) 1 h, (e, f) 2 h, (g, f) 4 h.

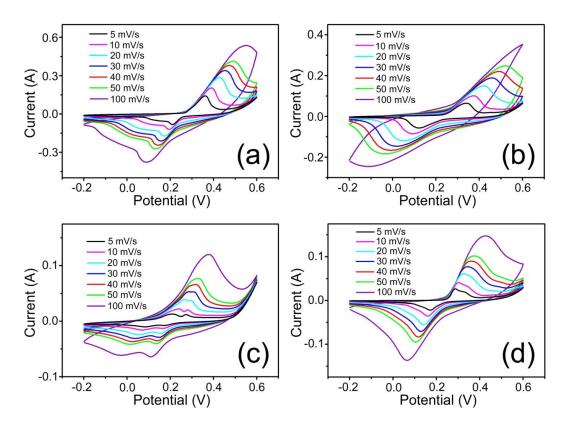


Fig. S8 CV curves at different scan rates of (a) NiO@NiMoO₄ hybrid composites, (b) NiO, (c) CoMoO₄ and (d) NiMoO₄ nanosheet arrays, respectively.

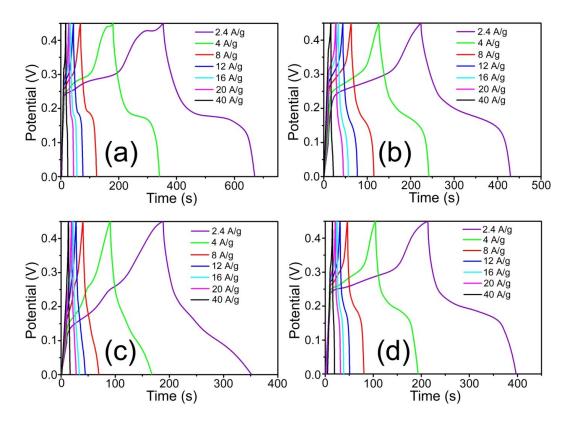


Fig. S9 Galvanostatic charge-discharge curves at different current densities of the (a) $NiO@NiMoO_4$ hybrid composites, (b) NiO, (c) $CoMoO_4$ and (d) $NiMoO_4$ nanosheet arrays, respectively.

Table S1 A comparison of the hierarchical $NiO@MMoO_4$ (M = Co, Ni) heterostructure electrode materials with other reported Ni- or Co- based electrodes in previous literatures.

Electrode Materials	Specific Capacitance	Ref.
NiO@CoMoO ₄ heterostructures	1834 F g ⁻¹ at 2.4 A g ⁻¹	This Work
NiO@NiMoO ₄ heterostructures	1685 F g ⁻¹ at 2.4 A g ⁻¹	This Work
NiO nano/microspheres	525 F g ⁻¹ at 4 A g ⁻¹	17
Flower-like NiO structures	340 F g ⁻¹ at 1 A g ⁻¹	18
Hierarchical NiO nanospheres	603 F g ⁻¹ at 0.5 A g ⁻¹	19
rGO-supported CoMoO4 nanorods	336.1 F g ⁻¹ at 1 A g ⁻¹	42
NiO/Co ₃ O ₄ core/shell composites	510 F g ⁻¹ at 5 mA cm ⁻¹	43
NiMoO ₄ nanotubes	864 F g ⁻¹ at 1 A g ⁻¹	44
NiMoO ₄ nanospheres	974.4 F g ⁻¹ at 1 A g ⁻¹	45
$CoMoO_4$ -NiMoO ₄ • xH ₂ O bundles	1039 F g ⁻¹ at 2.5 mA cm ⁻¹	46
NiMoO ₄ • H ₂ O nanoclusters	680 F g ⁻¹ at 1 A g ⁻¹	47
MnMoO ₄ /CoMoO ₄ heterostructured nanowires	187.1 F g ⁻¹ at 1 A g ⁻¹	48

Calculations

The specific capacitance (C) of the electrode was calculated from the discharge curves using the following formula¹:

$$C = \frac{I \times \Delta t}{m \times \Delta V}$$

where I (A), Δt (s), m (g), and ΔV (V) are the discharge current, discharge time consumed in the potential range of ΔV , mass of the active materials, and the potential windows, respectively. In this work, the area of the working electrode immersed into the electrolyte was controlled to be ~ 1 cm² and the specific capacitance at 2.4 A g⁻¹ were calculated as below:

For NiO@CoMoO₄ hybrid heterostructures electrode,

$$C = 11.352 \text{ mA} \times 344 \text{ s} / [(3.41+1.32) \text{ mg} \times 0.45 \text{ V}] = 1834 \text{ F g}^{-1};$$

For NiO@NiMoO₄ hybrid heterostructures electrode,

$$C = 12 \text{ mA} \times 316 \text{ s} / [(3.79+1.21) \text{ mg} \times 0.45 \text{ V}] = 1685 \text{ F g}^{-1};$$

For NiO nanosheets electrode,

$$C = 9.312 \text{ mA} \times 206 \text{ s} / (3.88 \text{ mg} \times 0.45 \text{ V}) = 1099 \text{ F g}^{-1};$$

For CoMoO₄ nanoflakes electrode,

$$C = 3.744 \text{ mA} \times 163.5 \text{ s} / (1.56 \text{ mg} \times 0.45 \text{ V}) = 872 \text{ F g}^{-1};$$

For NiMoO₄ nanoflakes electrode,

$$C = 3.48 \text{ mA} \times 183.5 \text{ s} / (1.45 \text{ mg} \times 0.45 \text{ V}) = 979 \text{ F g}^{-1}$$

The energy density (E) and power density (P) are calculated from the discharge curves using the following formula:

$$E = \text{Error!} \times C \times \Delta V^2$$
$$P = \frac{E}{\Delta t}$$

1. J. Yan, E. Khoo, A. Sumboja and P. S. Lee. ACS Nano, 2010, 4, 4247.