

Electronic supplementary information (ESI)

Mn(II) complexes of different nuclearity: synthesis, characterization and catecholase-like activity

Prateeti Chakraborty,^{*,a} ^e Ishani Majumder,^a Kazi Sabnam Banu,^a Bipinbihari Ghosh,^b Hulya Kara,^c Ennio Zangrando,^{*,d} and Debasis Das^{*,a}

^a*Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India*

^b*Department of Chemistry, Indian Institute of Engineering, Science and Technology, Shibpur, Howrah-711103, India*

^c*Department of Physics, Faculty of Science and Art, Balikesir University, 10145 Balikesir, Turkey*

^d*Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy*

^e*Department of Chemistry, Amity University, Newtown, Kolkata, West Bengal 700156, India*

Fig. S1 IR spectrum of complex 1.

Fig. S2 IR spectrum of complex 2.

Fig. S3 IR spectrum of complex 3.

Fig. S4 Electronic spectrum of complex 1.

Fig. S5 Electronic spectrum of complex 2.

Fig. S6 Electronic spectrum of complex 3.

Fig. S7 Dependence of rate of reaction on substrate concentration for complex **1** (100 μ M) at 25°C in DMSO for oxidation of Catechol.

Fig. S8 Dependence of rate of reaction on substrate concentration for complex **2** (100 μ M) at 25°C in DMSO for oxidation of Catechol.

Fig. S9 Dependence of rate of reaction on substrate concentration for complex **3** (100 μ M) at 25°C in DMSO for oxidation of Catechol.

Table S1. k_{cat} Value for Complexes **1,2,3** for oxidation of 3,5 DTBC in DMSO.

Complex	Wavelength (nm)	V_{max} (M s ⁻¹)	K_M (M)	k_{cat} (h ⁻¹)
1	405	1.6863510^{-5}	0.0405	607.08
2	400	2.3705210^{-5}	0.0271	853.38
3	400	7.0910^{-6}	0.0171	255.19

Fig. S10 Cyclic voltammogram of complex **1**, in DMSO, at the GC electrode at 100 mV s⁻¹ scan rate as representative.

Fig. S11 Cyclic voltammogram of complex **2**, in DMSO, at the GC electrode at 100 mV s⁻¹ scan rate as representative.

Fig. S12 Cyclic voltammogram of complex **3**, in DMSO, at the GC electrode at 100 mV s⁻¹ scan rate as representative.

Fig. S13 Cyclic voltammogram (anodic peak potentials) of complex **2**, in DMSO, at the GC electrode at 100 mV s^{-1} scan rate as representative.

Fig. S14 Cyclic voltammogram (anodic peak potentials) of complex **3**, in DMSO, at the GC electrode at 100 mV s^{-1} scan rate as representative.

Fig. S15 Cyclic voltammogram of complex **1** after addition of DTBC at the GC electrode in DMSO medium at 100 mV s^{-1} scan rate as representative.

Fig. S16 Differential Pulse Voltammogram of complex **1** after addition of DTBC at the GC electrode in DMSO medium at 100 mV s^{-1} scan rate as representative.