ELECTRONIC SUPPLEMENTARY MATERIAL to:

Dinuclear lanthanide(III)/ zinc(II) complexes from the use of methyl 2-pyridyl ketone oxime \dagger

Nikolaos C. Anastasiadis, ${ }^{a, b}$ Christina D. Polyzou, ${ }^{a, b}$ George Kostakis, ${ }^{a, c}$ Vlasoula Bekiari, ${ }^{d}$ Yanhua Lan, ${ }^{e}$ Spyros P. Perlepes, ${ }^{b}$ Konstantis F. Konidaris ${ }^{a^{*}}$ and Annie K. Powell ${ }^{a, e, \text {, }}$
${ }^{a}$ Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344
Eggenstein-Leopoldshafen, Germany.E-mail: konstantis.konidaris@gmail.com
${ }^{b}$ Department of Chemistry, University of Patras, GR-265 04 Patras, Greece.
${ }^{c}$ Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.
${ }^{d}$ Department of Aquaculture, Technological Educational Institute of Western Greece, GR-30200
Messolonghi, Greece.
e Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131
Karlsruhe, Germany. E-mail: annie.powell@kit.edu

SYNTHETIC DETAILS

All experiments were performed under aerobic conditions using materials (reagent grade) and solvents as received. The organic ligand mpko was prepared in typical yields of $>80 \%$ following the reported method. ${ }^{1}$

Preparation of $\left[\mathrm{ZnEu}(\mathrm{mpko})_{3}(\mathbf{m p k o H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}\left(\mathbf{1} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O })}\right.$

To a stirred, colourless solution of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.074 \mathrm{~g}, 0.2 \mathrm{mmol})$, mpkoH (0.164 g , $1.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(168 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added solid $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ $(0.178 \mathrm{~g}, 0.4 \mathrm{mmol})$. The solid soon dissolved and the resulting pale yellow solution was stirred for a further 5 min , filtered and the filtrate was stored in a closed vial at room temperature. After 2 d , pale yellow crystals of the product formed, which were collected by filtration, washed with cold $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, and dried in air. The yield was 60% (based on the $\mathrm{Zn}^{\mathrm{II}}$ available). The complex analysed satisfactorily as $\mathbf{1 . 2 \mathrm { H } _ { 2 } \mathrm { O }}$ (calculated formula $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{ZnEuN}_{12} \mathrm{O}_{16} \mathrm{Cl}_{2}$). Data are as follows (found values in parentheses): C, 39.84 (39.81); H, 3.90 (3.77); N, 13.28 (13.57) \%. IR bands ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3430 \mathrm{mb}[v(\mathrm{OH})], 3092 \mathrm{w}, 2802 \mathrm{w}, 1600 \mathrm{~s}, 1561 \mathrm{w}, 1473 \mathrm{~m}, 1439 \mathrm{sh}, 1375 \mathrm{~m}, 1326 \mathrm{w}, 1256 \mathrm{w}$, $1149 \mathrm{~m}\left[v(\mathrm{NO})_{\text {oximate/oxime }}\right], 1080 \mathrm{vs}\left[v_{3}\left(F_{2}\right)\right.$ of ClO_{4}^{-}, i.e. $\left.v_{\mathrm{d}}(\mathrm{ClO})\right]$, $1031 \mathrm{vs}, 1006 \mathrm{sh}, 958 \mathrm{~m}$, $782 \mathrm{~s}, 747 \mathrm{w}, 695 \mathrm{w}, 679 \mathrm{~m}$ [$\delta(2$-pyridyl ring) $], 624 \mathrm{~m}\left[v_{4}\left(F_{2}\right)\right.$ of ClO_{4}^{-}, i.e. $\left.\delta_{\mathrm{d}}(\mathrm{OClO})\right], 461 \mathrm{w}$ [$\gamma(2$-pyridyl ring $)$].

Preparation of $\left[\mathrm{ZnDy}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{mpko})_{3}(\mathrm{mpkoH})\right](4)$

To a stirred, almost colourless solution of $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.074 \mathrm{~g}, 0.2 \mathrm{mmol})$, mpkoH $(0.164 \mathrm{~g}, 1.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(168 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added solid $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.182 \mathrm{~g}, 0.4 \mathrm{mmol})$. The solid immediately dissolved and the resulting pale orange solution was stirred for a further 2 min , filtered and the filtrate was stored in a closed vial at room temperature. After 3 d , colourless crystals of the product were precipitated, collected by filtration, washed with cold $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$, and dried in air. The yield was 50% (based on the $\mathrm{Zn}^{\text {II }}$ available). The complex analysed satisfactorily as $\mathbf{4}$ (calculated formula $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ZnDyN}_{10} \mathrm{O}_{10}$). Data are as follows (found values in parentheses): C, 37.64 (37.86); H, 3.27 (3.18); N, 15.68 (15.80) \%. IR bands ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3220mb [$\left.\nu(\mathrm{OH})\right]$,
$3080 \mathrm{w}, 2930 \mathrm{w}, 1595 \mathrm{vs}, 1496 \mathrm{~s}$ [$v_{1}\left(A_{1}\right)$ of the bidentate chelating nitrato groups, i.e. $v(\mathrm{~N}=\mathrm{O})$], $1444 \mathrm{~s}, 1384 \mathrm{w}, 1350 \mathrm{w}, 1294 \mathrm{~s}$, $\left[v_{5}\left(B_{2}\right)\right.$ of the bidentate chelating nitrato groups, i.e. $\left.v_{\mathrm{as}}\left(\mathrm{NO}_{2}\right)\right]$, $1167 \mathrm{w}, 1135 \mathrm{w}$ [$\nu(\mathrm{NO})_{\text {oximate/oxime }}$], $1101 \mathrm{w}, 1033 \mathrm{~s}, 1012 \mathrm{sh}, 961 \mathrm{w}, 818 \mathrm{w}, 783 \mathrm{~m}, 745 \mathrm{w}, 679 \mathrm{~m}$ [$\delta(2$-pyridyl ring) $], 656 \mathrm{w}, 636 \mathrm{w}, 610 \mathrm{w}, 519 \mathrm{w}, 472 \mathrm{w}[\gamma(2$-pyridyl ring) $]$, 415 w.$$

Preparation of complexes $\quad\left[\mathrm{ZnGd}(\mathrm{mpko})_{3}(\mathbf{m p k o H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{2 H}_{\mathbf{2}} \mathrm{O} \quad\left(\mathbf{2} \cdot \mathbf{2 \mathbf { H } _ { 2 } \mathbf { O }) ,}\right.$ $\left[\mathrm{ZnTb}(\mathrm{mpko})_{3}(\mathbf{m p k o H})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }} \mathbf{(3 \cdot 2 \mathrm { H } _ { 2 } \mathrm { O })}$, and $\left[\mathbf{Z n H o}\left(\mathrm{NO}_{3}\right)_{2}(\mathbf{m p k o})_{3}(\mathbf{m p k o H})\right](5)$

Complexes $\mathbf{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were prepared in an identical manner with complex $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ by simply replacing $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with the corresponding hydrated nitrates of $\mathrm{Gd}(\mathrm{III})$ and Tb (III). The IR spectra of $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (see above), $\mathbf{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{3} \cdot \mathrm{H}_{2} \mathrm{O}$ are almost identical (superimposable) with a maximum wavenumber difference of $3 \mathrm{~cm}^{-1}$. Analytical data: For $\mathbf{2 \cdot 2} \mathrm{H}_{2} \mathrm{O}$ (calculated formula $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{ZnGdN}_{12} \mathrm{O}_{16} \mathrm{Cl}_{2}$, found values in parentheses): $\mathrm{C}, 39.67$ (39.82); H, 3.89 (3.79); N, 13.22 (13.46) \%. For $3 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (calculated formula $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{ZnTbN}_{12} \mathrm{O}_{16} \mathrm{Cl}_{2}$, found values in parentheses): C , 39.62 (39.48); $\mathrm{H}, 3.89$ (3.97); N , 13.20 (13.36) \%.

Complex 5 was prepared in an identical manner with complex 4 by simply replacing $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{Ho}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The IR spectra of 4 and 5 are almost identical (superimposable) with a maximum wavenumber difference of $2 \mathrm{~cm}^{-1}$. Analytical data for 5 (calculated formula $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ZnHoN}_{10} \mathrm{O}_{10}$, found values in parentheses): C , 37.53 (37.81); H , 3.27 (3.19); N, 15.64 (15.25) \%.

SINGLE-CRYSTAL X-RAY CRYSTALLOGRAPHY IN BRIEF

Data for $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{4}$ were collected at 180 K on a Stoe IPDS II area detector diffractometer using graphite-monochromated Mo k α radiation. Semi-empirical absorption corrections were applied using XPREP in SHELXTL. ${ }^{2}$ The structures were solved using direct methods, followed by a full-matrix least-squares refinement against F^{2} (all data) using SHELXTL. ${ }^{2}$ Anisotropic refinement was used for all ordered non-H atoms. Organic H atoms were placed at calculated positions, while coordinates of hydroxyl and aqua H atoms were either placed in calculated positions or located from the difference Fourier map and then constrained to ride on their parent atom with $U_{\text {iso }}=1.5 U_{\text {eq }}$ (parent atom). CCDC numbers $1021513\left(1 \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ and 1021514 (4).

HYDROGEN BONDS IN THE CRYSTAL STRUCTURE OF 12H2

Intracationic H bonds

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}(\AA)$	$\mathrm{H} \cdots \mathrm{A}(\AA)$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}(\AA)$	Symmetry operation
O1-H1 $\cdots \mathrm{O} 6$	$2.554(8)$	1.850	140.7	x, y, z
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 4$	$2.478(8)$	1.760	142.2	x, y, z
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 5$	$2.538(9)$	1.830	141.4	x, y, z

There are also H bonds between the $\mathrm{ClO}_{4}{ }^{-}$counterions (acceptors) and lattice $\mathrm{H}_{2} \mathrm{O}$ molecules (donors). Metric parameters: O16 $\cdots \mathrm{O} 102.933 \AA, \mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 102.333 \AA, \mathrm{O} 16-\mathrm{H} 16 \mathrm{~B} \cdots \mathrm{O} 10$ 126.3 ${ }^{\circ}$; O15 \cdots O11 $2.931 \AA$, H15D \cdots O11 $2.328 \AA$, O15-H15D \cdots O11 126.6 ${ }^{\circ}$; O15 \cdots O14 2.648 \AA, H15E $\cdots \mathrm{O} 142.024 \AA$, O15-H15E $\cdots \mathrm{O} 14157.6^{\circ}$.

Fig. S1 The capped square antiprismatic geometry of the $\mathrm{Eu}^{\mathrm{III}}$ centre in the structure of $\mathbf{1} 2 \mathrm{H}_{2} \mathrm{O}$; the very small spheres define the vertices of the ideal polyhedron.

Fig. S2 The H- bonded parallelogram of the type $\mathrm{HOH} \cdots \mathrm{O}\left(\mathrm{ClO}_{2}\right) \mathrm{O} \cdots \mathrm{HOH} \cdots \mathrm{O}\left(\mathrm{ClO}_{2}\right) \mathrm{O}$ that is present in the crystal structure of $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$; this involves two symmetry-related $\mathrm{H}_{2} \mathrm{O}$ molecules and ClO_{4}^{-}anions that belong to neighbouring unit cells.

Fig. S3 The capped square antiprismatic geometry of the Dy ${ }^{\text {III }}$ centre in the structure of $\mathbf{4}$; the very small spheres define the vertices of the ideal polyhedron.

Fig. S4 C-H $\cdots \pi$ interactions (black dashed lines) in the crystal lattice of 4; parts of the molecules have been omitted for clarity.

Fig. S5 Solid-state room-temperature excitation (emission at 540 nm , curve 1) and emission (excitation at 400 nm , curve 2) for complex $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. S6 Solid-state room temperature excitation (emission at 540 nm , curve 1) and emission (excitation at 400 nm , curve 2) for complex $\mathbf{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. S7 Frequency dependence of the in-phase (χ^{\prime}, left) and out-of-phase ($\chi^{\prime \prime}$, right) magnetic susceptibilities for $\mathbf{4}$ under different ($0,500,1000$ and 1500 Oe) dc fields at 1.8 K .

Fig. S8 Frequency dependence of the in-phase (χ^{\prime}) component of the ac susceptibility under an external dc field of 1000 Oe at the indicated temperatures for complex 4.

Table S1 Continuous Shape Measures (CShM) values for the possible coordination polyhedra of the 9-coordinate $\mathrm{Ln}^{\mathrm{III}}$ ions $(\mathrm{Ln}=\mathrm{Eu}, \mathrm{Dy})$ in the molecular structures of $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{4}^{a, b}$

Ideal polyhedron
Complex $\mathbf{1} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Complex 4

Enneagon	32.18447	34.03600
Octagonal pyramid	24.48622	24.26826
Heptagonal bipyramid	17.54353	17.14165
Johnson triangular cupola J3	13.13307	13.90252
Capped cube J8	9.10721	8.75379
Spherical-relaxed capped cube	8.08157	7.87166
Capped square antiprism J10	2.26502	3.19278
Spherical capped square	$\mathbf{1 . 8 0 7 3 5}$	$\mathbf{2 . 3 4 8 2 0}$
antiprism	2.02863	2.96985
Tricapped trigonal prism J51	1.80967	2.36835
Spherical tricapped trigonal	11.34007	11.24506
prism	12.07364	10.50385
Tridiminished icosahedron J63	2.26405	2.35765
Hula-hoop		
Muffin		

${ }^{a}$ The smallest value (in bold) defines the best polyhedron. ${ }^{b}$ Chemically significant distortions give CShM values of 0.1 or higher, while values larger than 3 indicate important distortions.

REFERENCES FOR THE ESI

${ }^{1}$ M. Orama, H. Saarinen and J. Korvenranta, J. Coord. Chem., 1990, 22, 183.
${ }^{2}$ G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.

