Electronic Supporting Information (ESI)

Table of Contents

<i>I</i> – Experimental Section	S3
<i>II</i> – MALDI-TOF-MS spectra	S4
III – NMR data	S5
<i>IV</i> – Titration of compound 1 with the pH	S11
V – Theoretical calculations	S12
References	S13

S3

An unusual highly emissive water-soluble Iridium Lissamine-Alanine complex with a molecular logic gate approach.

E. Oliveira^{a,b,c*}, S.M. Santos^d, C. Núñez^{a,e}, J. L. Capelo^{a,b} and C. Lodeiro^{a,b*}

^aUCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

^bProteoMass Scientific Society. Madan Parque. Rua dos Inventores. 2825-182. Caparica. Portugal

^eVeterinary Science Department and CECAV, University of Trás-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal.

^dDepartment of Chemistry and CICECO, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

^eInorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

* Corresponding authors e-mail: ej.oliveira@fct.unl.pt (E.O) and cle@fct.unl.pt (C.L.)

I - Experimental Section

Synthesis and physical characterization of compound 1. Compound HCl.H-Ala-OMe was obtained according with the procedure in (1). HCl. H-Ala-OMe (23.9 mg, $1.73 \times 10-4$ mol) was neutralized by the addition of 23 µl of triethylamine in acetonitrile for 30 minutes. Thereafter, lissamine rhodamine B sulfonyl chloride (Compound A) (50 mg, 8.66×10^{-5} mol) and cesium carbonate (1.73×10^{-4} mol) were added to the previous mixture and then stirred under N₂ for 30 minutes and cooled at 0°C in an ice-water bath. The final mixture was kept under stirring for 32 hours at room temperature. The product 1 formation was confirmed by TLC (thin layer chromatography). The mixture was filtered, and the filtrate dried under N₂ atmosphere at room temperature. The residue obtained was purified by column chromatography with silica gel (eluent: CH₂Cl₂/MeOH 10:1). The fractions were combined, and the product 1 was obtained as a solid.

Red powder (40 mg, 72%), C₃₁H₃₇N₃O₈S₂, FW = 643.77 Elementar Analysis: (Found: C, 57.65; H, 5.79; N, 6.67; S, 9.72 % CHNS requires: C, 57.84; H, 5.79; N, 6.53; S, 9.96).

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 1.32 (m, 12H, H1), 1.53 (d, *J*= 4Hz 3H, βCH₃ alanine, H23), 3.59 (m, 4H, H2), 3.76 (s, 3H, OCH₃ alanine, H25), 4.23 (m, 1H, αH alanine, H22), 5.45 (m, 1H, NH alanine), 6.69 (s, 2H, H4, H14), 6.81 (m, 1H, H7, H15), 6.74 (m, 2H, H9,H10), 8.01 (m, 2H, H20, H21), 8.86 (s, 1H, H18). $\delta_{\rm C}$ (ppm) = 12.62 (C1, C1'), 19.74 (<u>C</u>H₃ alanine, C25), 28.82 (O<u>C</u>H₃ alanine, C24), 45.94 (C24), 52.92-51.98 (C2, C2'), 95.51 (C4), 113.64 (C18), 114.18 (C7), 127.35-126.94 (C9, C11, C15), 129.91 (C21), 133.26 (C13), 134.20 (C10), 141.72 (C20), 148.44 (C12, C14), 155.56 (C16, C17, C19), 157.71 (C6, C8), 158.78 (C5), 172.62 (C23).

UV-Vis in miliQ water (λ , nm): Band at 570 nm (ϵ = 27858 cm⁻¹.M⁻¹). Emission spectrum in miliQ water (λ_{exc} = 560 nm, λ_{emis} = 590 nm). Lifetime: τ = 2.47 ns, MALDI-TOF-MS, calc (found): [1H]⁺ 644.20 (644.16) m/z.

Figure S1. MALDI-TOF-MS spectra of compound 1 using as matrix the sinapic acid.

Figure S2. Absorption, emission and excitation spectra of compound 1 in aqueous solution at room temperature. ([1] = 4.66×10^{-6} M, $\lambda_{exc.}$ = 560 nm, T = 298 K).

Figure S3. ¹H NMR spectra of compound 1 before (top) and after (down) the addition of 1 equiv. of Ir^{3+} to form the species Ir@1 complex in CDCl₃.

Figure S4. ¹³C NMR spectrum of compound 1 in CDCl₃.

Figure S5. COSY $(^{1}H/^{1}H)$ NMR spectrum of compound 1 in CDCl₃.

Figure S6. COSY (¹H/¹H) NMR spectrum of compound 1 in CDCl₃ (amplification 9.0-5.0 ppm).

Figure S7. COSY (¹H/¹H) NMR spectrum of compound 1 in CDCl₃ (amplification 1.0-5.0 ppm).

IV – Titration of compound 1 with the pH

Figure S8 – Absorption and emission titrations of compound 1 in aqueous solution with pH. ([1] = 1.16×10^{-5} M, $\lambda_{exc.} = 535$ nm, T = 298K).

V – Theoretical calculations

Table S1: Calculated ¹H chemical shieldings (σ) for the amino acid (in ppm), calculated at the B3LYP/6-31G** level (plus LanL2DZ for the Ir³⁺ cation) in implicit acetonitrile, along with the complexation induced chemical shifts (δ) for each group of protons. Since only variations in the chemical shielding are being considered, conversion of chemical shielding to chemical shifts is not required (note, however, that temperature and dynamic effects are completely ignored).

	σı / ppm	$\sigma_{lr@1}$ / ppm	$\sigma_{Ir@1} - \sigma_1 / ppm$				
NH	28.15	25.87	2.28 (0.6 ^b)				
CH ₃ ^(a)	30.34	29.90	0.44 (0.3 ^b)				
СН	27.07	27.00	-0.07 (-0.3 ^b)				
OCH3 ^(a)	27.08	27.51	-0.43 (-0.4 ^b)				
 ^{a)} average over the three equivalent nuclei; ^{b)} experimental values presented for reference; 							

Table S2: Calculated vertical excitation energies (E_{exc}) for the receptor (1) and complex (Ir@1) in the gas-phase, calculated at the B3LYP/6-31G** level (plus LanL2DZ for the Ir³⁺ cation), along with the corresponding oscillator strengths ($f_{oscillator}$) and excitation wavelengths (λ_{exc} / nm).

	Ir@1			1		
excitation	E_{exc} / eV	λ_{exc} / nm	foscillator	E _{exc.} / eV	λ_{exc} / nm	foscillator
1	2.0911	592.91	0.0193	1.9497	635.91	0.0292
2	2.3351	530.96	0.0000	2.6328	470.93	0.0565
3	2.4807	499.79	0.0003	2.8897	429.06	0.6501
4	2.7227	455.37	0.1584	2.9455	420.93	0.0785
5	2.7519	450.53	0.3308	3.0627	404.82	0.0442
6	2.7680	447.92	0.1682	3.3107	374.50	0.0024
7	2.7816	445.73	0.0021	3.6007	344.34	0.0567
8	2.8440	435.95	0.0731	3.6102	343.42	0.0139
9	2.8522	434.70	0.0012	3.8230	324.31	0.0054
10	2.8869	429.46	0.0426	3.8605	321.16	0.0108

Figure S9. The depiction of the HOMO (left) and LUMO (right) of the free receptor (top) and complex (bottom) drawn at the \pm 0.015 isolevel. Three Cl⁻ counter anions and one water molecule complete the coordination sphere of Ir³⁺.

References

(1) E. Oliveira, J. L. Capelo, J. C. Lima, C. Lodeiro, Amino Acids, 2012, 43, 1779.