Synthesis of the first metal-free phosphanylphosphonate and its use in the "phospha-Wittig-Horner" Reaction

K. Esfandiarfard, A. Arkhypchuk,* A. Orthaber and S. Ott*[a]

^{a.} Department of Chemistry-Ångström Laboratories, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden. E-mail: anna.arkhypchuk@kemi.uu.se; sascha.ott@kemi.uu.se

Supporting Information

Experimental Details

Synthesis of phosphaalkene 4 via the phospha-Wittig-Horner reaction – pWH reagent (0.25 mmol, 104 mg) was exposed to the reaction conditions as specified in the main manuscript and the reaction mixture purified by column chromatography (silica gel, heptane/ethyl acetate, 4:1) to give a mixture of isomers (yellow solid). Yield: 69 mg, 71%. The chemical shifts of *E*-4 match the NMR data reported in the literature.¹ ¹H NMR and ³¹P NMR data for *Z*-4 were however detectable from the spectrum of the pure isomeric mixture (Appendices, Figure S4): ¹H NMR (CDCl₃, 399.8 MHz): δ 7.79 (d, ²*J*_{H-P} = 36.9 Hz, 1H, P=C*H*), 7.63 (s, 2H), 7.19 (d, ³*J*_{H-H} = 8.4 Hz, 2H, Ar*H*), 6.20 (d, ⁴*J*_{H-P} = 8.5, 2.2 Hz, 2H, Ar*H*), 1.43 (s, 18H), 1.40 (s, 9H). ³¹P{¹H} NMR (CDCl₃, 161.8 MHz): δ 265.3 (s).

Both column chromatography and oxalyl chloride treatment were tested as the purification processes. The former afforded pure phosphaalkene 4 as a mixture of isomers but the proportion of the Z isomer increased after the purification. The latter gave the phosphaalkene products with high *E*-selectivity without changing the E/Z ratio through the purification process (Figure S1), although some traces of unknown impurities was detectable. It is noteworthy that 4-cyanobenzaldehyde does not dissolve in pentane and was filtered off before the addition of oxalyl chloride.

Figure S1 – ¹H NMR spectra of **4** in two different reactions, purified with column chromatography (top) or oxalyl chloride treatment (bottom). The doublets at 8.04 and 7.79 ppm correspond to the P=CH of *E*-**4** and *Z*-**4**, respectively. According to the integration of these protons, it is clearly shown that oxalyl chloride addition keeps the *E*-stereoselectivity high even after the purification.

Synthesis of phosphaalkene 6² via the phospha-Wittig-Horner reaction – pWH reagent (0.25 mmol, 104 mg) was applied to the reaction conditions to give a crude mixture which was chromatographed on silica gel using pentane/ethyl acetate, 95:5, as the eluent. Final product was isolated as yellow solid with small impurity of *Z*-6. Yield: 53 mg, 65%. ¹H NMR (CDCl₃, 399.8 MHz): δ 8.12 (d, ²*J*_{H-P} = 24.0 Hz, 1H, P=C*H*), 7.44 (s, 2H, Ar*H*), 7.17 (d, ³*J*_{H-H} = 5.4 Hz, 1H), 6.92-6.99 (m, 2H), 1.53 (s, 18H, *ortho*-C(CH₃)), 1.35 (s, 9H, *para*- C(CH₃)). ³¹P{¹H} NMR (CDCl₃, 161.8 MHz): δ 246.8 (s). ¹³C{¹H} NMR (CDCl₃, 100.5 MHz): δ 166.2 (d, ¹*J*_{C-P} = 30.8 Hz, P=C), 154.3 (d, ³*J*_{C-P} = 1.2 Hz, *ortho*-ArC), 150.0 (s, *para*-ArC), 145.3 (d, ²*J*_{C-P} = 17.3 Hz, Thienyl-C), 138.5 (d, ¹*J*_{C-P} = 53.1 Hz, *ipso*-ArC), 127.8 (d, *J* = 4.2 Hz), 125.6 (d, *J* = 22.7 Hz), 125.0 (d, *J*_{C-P} = 6.9 Hz, ortho-C(CH₃)₃), 31.5 (s, *para*-C(CH₃)₃).

X-ray diffraction data

All measurements were performed using graphite-monochromatized Mo K_{α} radiation at 100K using a Bruker D8 APEX-II equipped with a CCD camera. The structure was solved by direct methods (SHELXS-2014) and refined by full-matrix least-squares techniques against F^2 (SHELXL-2014/7).^[1] The non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms of the CH₂ groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and C-H distances of 0.99Å. The H atoms of the methyl groups were refined with common isotropic displacement parameters for the same group and idealized geometry with approximately tetrahedral angles and C-H distances of 0.98Å.

Table 1. Crystal data and structure refinement for compou	nds 2-H and Z-5.
---	------------------

	Compound 2-H	Compound Z-5
Crystal data	H1 02 01 C1 P1 P2 03	C4 C5 C12 C3 C3 C6 C7 C13 C1 C2 C11 C10 C9 C8
CCDC-No.	1423585	1423584
Empirical formula	$C_{22}H_{40}O_3P_2$	$C_{30}H_{39}P_1$
Formula weight	414.48	430.58
Crystal description	colorless block	colorless needle
Crystal size	0.3x0.26x0.22	0.30x0.12x0.12
Crystal system, space group	triclinic, P-1	triclinic, P-1
Unit cell dimensions: a	9.5128(3)	10.3513(12)
b	10.5246(4)	10.3810(13)
с	12.6133(5)	24.524(3)
α, β, γ	74.848(2), 74.761(2),	94.404(3), 98.422(4),
	88.062(2)	94.918(4)
Volume	1175.24(8)	2586.6(6)
Ζ	2	4
Calculated density	1.171	1.106
F(000)	452	936
Linear absorption coefficient µ	0.203	0.121
Absorption correction	multi-scan, SADABS 2008	multi-scan, SADABS 2008
Max. and min. transmission	0.5095, 0.7456	0.6037 and 0.7454

Unit cell determination	$1.7 < \theta < 25.2^{\circ}$	$2.4 < \theta < 25.2^{\circ}$
	3964 reflections used at 100K	4389 reflections used at 100K
Data collection		
Temperature	100(2)K	100(2)K
Diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD
Radiation source	fine-focus sealed tube	fine-focus sealed tube
Radiation and wavelength	MoK _α , 0.71073Å	MoK _α , 0.71073Å
Monochromator	Graphite	Graphite
Scan type	ω scans	ω scans
Θ range for data collection	1.73 to 27.96°	2.41 to 26.45°
Index ranges	$-12 \le h \le 11, -13 \le k \le 13, -16$	$-12 \le h \le 12, -12 \le k \le 12, -30$
	$\leq l \leq 16$	$\leq 1 \leq 30$
Reflections collected / unique	18027 / 5613	21308/ 10361
Significant unique reflections	3964 with $I > 2\sigma(I)$	4389 with $I > 2\sigma(I)$
R(int), R(sigma)	0.0492, 0.0758	0.1187, 0.2347
Completeness to Θ_{max}	99.2%	97.5%
Refinement		
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on
	F ²	F ²
Data / parameters / restraints	5613/259/0	10361/ 559/ 0
Goodness-of-fit on F ²	1.067	0.956
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0480, wR2 = 0.1106	R1 = 0.0828, WR2 = 0.1658
R indices (all data)	R1 = 0.0810, wR2 = 0.1237	R1 = 0.2216, WR2 = 0.2228
Weighting scheme	$w=1/[\sigma^2(F_0^2)+(aP)^2+bP]$	$w=1/[\sigma^{2}(F_{o}^{2})+(aP)^{2}]$, where
	where $P = (F_0^2 + 2F_c^2)/3$	$P = (F_o^2 + 2F_c^2)/3$
Weighting scheme parameters a, b	0.0564, 0.0511	0.0936
Largest Δ/σ in last cycle	0.000	0.001
Largest difference peak and hole	0.470 and -0.590 e/Å ³	0.383 and -0.322 e/Å ³
Structure Solution Program	SHELXS-2014 (Sheldrick,	SHELXS-2014 (Sheldrick,
	2008)	2008)
Structure Refinement Program	SHELXL-2014 (Sheldrick,	SHELXL-2014 (Sheldrick,
	2008)	2008)

References

A. Termaten, M. van der Sluis and F. Bickelhaupt, *Eur. J. Org. Chem.*, 2003, 2003, 2049–2055.
M. van der Sluis, A. Klootwijk, J. B. M. Wit, F. Bickelhaupt, N. Veldman, A. L. Spek and P. W. Jolly, *J. Organomet. Chem.*, 1997, 529, 107–119.

Appendices

Figure S2 – ³¹P NMR (top), ¹H NMR (middle) and APT (bottom) spectra of phosphanylphosphonate 2-H.

Figure S3 – ³¹P NMR (top), ¹H NMR (middle) and ¹³C{¹H} NMR (bottom) spectra of phosphaalkene *E*-3.

Figure S4 – 31 P NMR (top), 1 H NMR (bottom) spectra of phosphaalkene 4, as mixture of the two isomers. The assigned signals belong to Z-4.

Figure S5 – 31P NMR (top), 1H NMR (middle) and APT NMR (bottom) spectra of phosphaalkene *E*-5. The small peaks observable in these spectra belong to the other isomer, *Z*-5.

Figure S6 – 31 P NMR (top), 1 H NMR (middle) and APT NMR (bottom) spectra of phosphaalkene Z-5. The small peaks observable in these spectra belong to the other isomer, *E*-5.

Figure S7 – ³¹P NMR (top), ¹H NMR (middle) and ¹³C {¹H}NMR (bottom) spectra of phosphaalkene *E*-6. The small peaks observable in these spectra belong to the other isomer, *E*-6.

Figure S8 – ³¹P NMR (top), ¹H NMR (middle) and APT NMR (bottom) spectra of phosphaalkene E-7.