Supporting Information

2-(2'-Hydroxyphenyl)-benzothiazole (HBT)-quinoline conjugate: Highly specific fluorescent probe for Hg²⁺based on ESIPT and its application in bioimaging

Sunanda Sahana^a, Gargi Mishra^b, Sri Sivakumar^b, Parimal K. Bharadwaj^a*

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India

^bDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India

Contents

Fig. S1. ¹ H NMR spectrum of A	Page S2
Fig. S2. ¹³ C NMR spectrum of A	Page S2
Fig. S3. ESI MS spectrum of the A	Page S3
Fig. S4. ¹ H NMR spectrum of B	Page S3
Fig. S5. ¹³ C NMR spectrum of B	Page S4
Fig. S6. ESI MS spectrum of the B	Page S4
Fig. S7. ¹ H NMR spectrum of L	Page S5
Fig. S8. ¹³ C NMR spectrum of L	Page S5
Fig. S9. ESI MS spectrum of the L	Page S6
Fig. S10 ESI MS spectrum of the $L - Hg^{2+}$ complex	Page S6
Fig. S11 Absorbance titration of L with increasing Hg^{2+} ion	Page S7
Fig. S12 Job's plot	Page S7
Fig. S13 Plot for detection limit	Page S8
Table 1: Comparison of some ESIPT based Hg ²⁺ sensors	Page S8

Fig.S1 ¹H NMR spectrum of A

Fig.S2 ¹³C NMR spectrum of A

Fig. S3 ESI MS spectrum of the A

Fig. S4 ¹H NMR spectrum of B

Fig. S5 ¹³C NMR spectrum of B

Fig. S6 ESI MS spectrum of the B

Fig. S7 ¹H NMR spectrum of L

Fig. S8 ¹³C NMR spectrum of L

Fig. S9 ESI MS spectrum of the L

Fig. S10 ESI MS spectrum of the $L-{\rm Hg}^{2+}$ complex

Fig. S11 Absorbance titration of L with increasing Hg²⁺ ion concentration in MeCN: H₂O (3:2, v/v, 10 mM HEPES Buffer, pH = 7). λ_{exc} = 340 nm,. Arrow indicates the increasing trend in Hg²⁺ ion concentration.

Fig. S12 Job's plot for determination of binding stoichiometry between L and Hg^{2+}

Fig.S13 Linear response curve of L at 590 nm depending on the Hg^{2+} ion concentration for determination of lowest detection limit

Entry	Probe	Solvent system	Detection limit	Binding constant	Stoichiometry (Ligand:Hg ²⁺)	Imaging applied on	References
						cells	
1	2	CH ₃ CN/H ₂ O	-	1.04×10^{5}	2:1	-	1
		(1:1; V/V)		M ⁻²			
2	1	PBS buffer	20 ppb	-	2:1	-	2
		(~1% CH ₃ CN)					
3	1	PBS buffer	5.1 nM	-	1:1	HeLa cells	3
		(0.5% CH ₃ CN)					
4	2	PBS buffer	3.8 nM	-	1:1	HeLa cells	3
		(0.5% CH ₃ CN					
5	PDP	CH ₃ CN/ H ₂ O (1	4.9 μM	7.5×10^{3}	1:1	lung cancer	4
		: 1;V/V)		M-1		cell line (NCI-	
						H460)	
6	Pvi	PBS buffer (1%	7.8 nM	-	-	HeLa cells	5
		CH ₃ CN)					
7	L	CH ₃ CN: H ₂ O	0.11 μM	1.24×10^{4}	1:1	HeLa cells	Present Study
		(3:2; V/V)		M ⁻¹			

 Table 1: Comparison of some ESIPT based Hg²⁺ sensors

References

1. A. Misra and M. Shahid, J. Phys. Chem. C., 2010, 114, 16726-16739.

2. M. Santra, B. Roy, and K. H. Ahn, Org. Lett., 2011, 13, 3422-3425.

3. W. Luo, H. Jiang, K. Zhang, W. Liu, X. Tang, W. Dou, Z. Ju, Z. Li and W. Liu, *J. Mater. Chem. B.*, 2015, **3**, 3459-3464.

4. S. Goswami, S. Maity, A. C. Maity, A.K. Das, B. Pakhira, K. Khanra, N. Bhattacharyya and S. Sarkar, *RSC Adv.*, 2015, **5**, 5735-5740.

B. Gu, L. Huang, N. Mi, P. Yin, Y. Zhang, X. Tu, X. Luo, S. Luo and S. Yao, *Analyst.*, 2015, 140, 2778-2784.