## Supporting Information

## Two S = 1/2 One-Dimensional Barium Copper Phosphates Showing Antiferromagnetic and Ferromagnetic Intrachain Interactions

Ming Yang,<sup>a</sup> Meiyan Cui,<sup>a,b</sup> Suyun Zhang,<sup>a</sup> Hongping Xiang,<sup>\*a</sup> Wenbin Guo<sup>a</sup> and Zhangzhen He<sup>\*a</sup> <sup>a</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China. E-mail: xianghp@fjirsm.ac.cn, hcz1988@hotmail.com or hezz@fjirsm.ac.cn. Fax: +86-591-63173255; Tel: +86-591-63173254, +86-591-63173255. <sup>b</sup>University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

| BaCu <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> (H <sub>2</sub> O) |            |                       |            |                      |           |  |
|----------------------------------------------------------------------|------------|-----------------------|------------|----------------------|-----------|--|
| Ba1—O1                                                               | 2.727 (2)  | Ba1—O3                | 3.132 (3)  | Ba1—O3 <sup>v</sup>  | 2.899 (2) |  |
| Ba1—O7 <sup>i</sup>                                                  | 2.754 (2)  | Ba1—O6 <sup>iii</sup> | 2.785 (2)  | Ba1—O5 <sup>ii</sup> | 3.007 (2) |  |
| Ba1—O8 <sup>ii</sup>                                                 | 2.770 (2)  | Ba1—O2 <sup>iv</sup>  | 2.850 (2)  | Ba1—O4 <sup>v</sup>  | 3.109 (3) |  |
| Ba1—O8 <sup>i</sup>                                                  | 3.147 (2)  | Ba1—O8 <sup>iii</sup> | 3.214 (2)  |                      |           |  |
| Cu1—O1                                                               | 1.912 (2)  | Cu1—O6 <sup>v</sup>   | 1.912 (2)  | Cu1—O4 <sup>v</sup>  | 1.998 (2) |  |
| Cu1—O5                                                               | 2.014 (2)  | Cu1—O9                | 2.490 (2)  |                      |           |  |
| Cu2—O2                                                               | 1.987 (2)  | Cu2—O4 <sup>vi</sup>  | 2.005 (2)  | Cu2—O9               | 2.259 (2) |  |
| Cu2—O7 <sup>vi</sup>                                                 | 1.922 (2)  | Cu2—O5                | 1.961 (2)  |                      |           |  |
| P1—O1                                                                | 1.546 (2)  | P1—O2                 | 1.528 (2)  | P1—O3                | 1.505 (2) |  |
| P1—O4                                                                | 1.584 (2)  |                       |            |                      |           |  |
| P2—O5                                                                | 1.578 (2)  | P2—O6                 | 1.541 (2)  | P2—O7                | 1.541 (2) |  |
| P2—O8                                                                | 1.492 (2)  |                       |            |                      |           |  |
| Cu1—Cu2                                                              | 3.192(4)   | Cu1—Cu2 <sup>ii</sup> | 3.259(3)   |                      |           |  |
| Cu1 <sup>vii</sup> —O4—Cu2 <sup>iii</sup>                            | 109.04 (7) | Cu2—O5—Cu1            | 106.82 (4) | Cu2—O9—Cu1           | 84.32 (4) |  |

 Table S1 Slected bond lengths [Å] and angles [°] for 1 and 2.

Symmetry codes: (i) 1/2-x, 1-y, 1/2+z; (ii) 1-x, 1/2+y, 1/2-z; (iii) -x, 1/2+y, 1/2-z; (iv) 1/2+x, 1/2-y, 1-z; (v) 1+x, y, z; (vi) -x, -1/2+y, 1/2-z; (vii) -1+x, y, z.

| Ba <sub>2</sub> Cu(HPO <sub>4</sub> )(PO <sub>4</sub> )(OH) |           |                            |           |                       |           |  |
|-------------------------------------------------------------|-----------|----------------------------|-----------|-----------------------|-----------|--|
| Ba1—O1                                                      | 2.878 (4) | Ba1—O2                     | 3.155 (3) | Ba1—O2 <sup>v</sup>   | 3.155 (3) |  |
| Ba1—O1 <sup>i</sup>                                         | 2.878 (4) | Ba1—O3 <sup>ii</sup>       | 2.755 (6) | Ba1—O4                | 2.735 (4) |  |
| Ba1—O4 <sup>i</sup>                                         | 2.735 (4) | Ba1—O4 <sup>iii</sup>      | 2.926 (4) | Ba1—O4 <sup>iv</sup>  | 2.926 (4) |  |
| Ba1—O7                                                      | 2.718 (5) |                            |           |                       |           |  |
| Ba2—O1                                                      | 2.893 (4) | Ba2—O1 <sup>i</sup>        | 2.893 (4) | Ba2—O2 <sup>ii</sup>  | 2.588 (6) |  |
| Ba2—O3                                                      | 3.210 (3) | Ba2—O3 <sup>v</sup>        | 3.210 (3) | Ba2—O4 <sup>vii</sup> | 2.825 (4) |  |
| Ba2—O4 <sup>viii</sup>                                      | 2.825 (4) | Ba2—O5 <sup>vi</sup>       | 2.755 (5) | Ba2—O6 <sup>vi</sup>  | 3.082 (6) |  |
| Ba2—O6 <sup>viii</sup>                                      | 3.202 (3) | Ba2—O6 <sup>ix</sup>       | 3.202 (3) |                       |           |  |
| Cu1—O1                                                      | 2.004 (4) | Cu1—O1 <sup>vi</sup>       | 2.004 (4) | Cu1—O7                | 1.915 (3) |  |
| Cu1—O7 <sup>vi</sup>                                        | 1.915 (3) | Cu1—O5                     | 2.486 (2) | Cu1—O5 <sup>x</sup>   | 2.486 (2) |  |
| P1—O1                                                       | 1.550 (4) | P1—O1 <sup>xi</sup>        | 1.550 (4) | P1—O2                 | 1.531 (6) |  |
| P1—O3                                                       | 1.535 (6) |                            |           |                       |           |  |
| P2—O4                                                       | 1.528 (4) | P2—O4 <sup>xi</sup>        | 1.528 (4) | P2—O5                 | 1.513 (5) |  |
| P2—O6                                                       | 1.636 (6) | Cu1—Cu1 <sup>x</sup>       | 2.934 (6) |                       |           |  |
| Cu1 <sup>x</sup> —O7—Cu1                                    | 100.0 (2) | Cu1 <sup>xii</sup> —O5—Cu1 | 72.35 (2) |                       |           |  |

Symmetry codes: (i) x, 3/2-y, z; (ii) 1-x, 1-y, -z; (iii) -x, 1-y, -z; (iv) -x, 1/2+y, -z; (v) x, 1+y, z; (vi) 1-x, 1-y, 1-z; (vii) 1+x, 3/2-y, z; (viii) 1+x, y, z; (ix) 1+x, 1+y, z; (x) 1-x, 1/2+y, 1-z; (xi) x, 1/2-y, z;

(xii) 1-x, y-1/2, 1-z.

|       |              | BaCu <sub>2</sub> (PO <sub>4</sub> )   | $_{2}(H_{2}O)$        |               |
|-------|--------------|----------------------------------------|-----------------------|---------------|
| atoms | x            | У                                      | Ζ                     | U             |
| Ba1   | 0.50269 (3)  | 0.520739 (17)                          | 0.463829 (11)         | 0.00913 (5)   |
| Cu1   | 0.51885 (9)  | 0.25142 (3)                            | 0.26005 (2)           | 0.00782 (8)   |
| Cu2   | 0.10029 (7)  | 0.01181 (4)                            | 0.27986 (3)           | 0.00689 (8)   |
| P1    | 0.01741 (18) | 0.30149 (7)                            | 0.37728 (5)           | 0.00576 (15)  |
| P2    | 0.01363 (18) | 0.22221 (7)                            | 0.13268 (5)           | 0.00561 (14)  |
| O1    | 0.2846 (4)   | 0.3458 (2)                             | 0.33972 (16)          | 0.0103 (5)    |
| O2    | -0.0115 (5)  | 0.14526 (19)                           | 0.37514 (13)          | 0.0095 (4)    |
| O3    | -0.0236 (5)  | 0.3611 (2)                             | 0.47147 (14)          | 0.0131 (5)    |
| O4    | -0.1942 (4)  | 0.3658 (2)                             | 0.31131 (7)           | 0.0081 (5)    |
| 05    | 0.2265 (4)   | 0.1541 (2)                             | 0.19567 (6)           | 0.0063 (5)    |
| O6    | -0.2525 (4)  | 0.1767 (2)                             | 0.16968 (17)          | 0.0101 (5)    |
| 07    | 0.0541 (4)   | 0.3789 (2)                             | 0.13935 (14)          | 0.0089 (5)    |
| 08    | 0.0471 (4)   | 0.1755 (2)                             | 0.03588 (15)          | 0.0114 (5)    |
| 09    | 0.4839 (4)   | 0.0370 (2)                             | 0.35244 (16)          | 0.0163 (5)    |
| H9A   | 0.618 (7)    | -0.011 (4)                             | 0.353 (2)             | 0.020 (fixed) |
| H9B   | 0.476 (7)    | 0.055 (4)                              | 0.407 (3)             | 0.020 (fixed) |
|       |              | Ba <sub>2</sub> Cu(HPO <sub>4</sub> )( | PO <sub>4</sub> )(OH) |               |
| atoms | x            | У                                      | Ζ                     | U             |
| Bal   | 0.21405 (5)  | 0.7500                                 | 0.09602 (5)           | 0.00650 (13)  |
| Ba2   | 0.78511 (5)  | 0.7500                                 | 0.26916 (5)           | 0.00907 (13)  |
| Cu1   | 0.5000       | 0.5000                                 | 0.5000                | 0.00736 (19)  |
| P1    | 0.4899 (2)   | 0.2500                                 | 0.1825 (2)            | 0.0052 (3)    |
| P2    | 0.0637 (2)   | 0.2500                                 | 0.3034 (2)            | 0.0050 (3)    |
| 01    | 0.5049 (5)   | 0.4696 (6)                             | 0.2819 (4)            | 0.0084 (7)    |
| O2    | 0.3166 (7)   | 0.2500                                 | 0.0384 (6)            | 0.0165 (12)   |
| O3    | 0.6489 (7)   | 0.2500                                 | 0.1362 (7)            | 0.0146 (11)   |
| O4    | 0.0198 (4)   | 0.4641 (6)                             | 0.1996 (4)            | 0.0108 (7)    |
| 05    | 0.2414 (7)   | 0.2500                                 | 0.4375 (6)            | 0.0100 (10)   |
| O6    | -0.0730 (7)  | 0.2500                                 | 0.3932 (7)            | 0.0137 (11)   |
| O7    | 0.3424 (6)   | 0.7500                                 | 0.4202 (6)            | 0.0083 (10)   |
| H6    | -0.1760      | 0.2500                                 | 0.3651                | 0.020 (fixed) |
| H7    | 0.2460       | 0.7500                                 | 0.4370                | 0.020 (fixed) |

 Table S2 Atomic site parameters for 1 and 2.

| Table 55 The geometries of hydrogen bonds for T and 2. |           |               |                               |                                             |            |
|--------------------------------------------------------|-----------|---------------|-------------------------------|---------------------------------------------|------------|
| compound                                               | D–H···A   | $d_{D-H}$ (Å) | $d_{H^{\cdots}A}(\text{\AA})$ | $d_{D^{\cdots}A}\left( \mathring{A}\right)$ | ∠D–H…A (°) |
| 1                                                      | O9−H9A…O3 | 0.81          | 1.95                          | 2.75                                        | 167.25     |
|                                                        | O9–H9A…O7 | 0.84          | 2.01                          | 2.84                                        | 167.93     |
| 2                                                      | O7−H7…O6  | 0.87          | 2.48                          | 3.29                                        | 154.23     |
|                                                        | O6−H6…O3  | 0.80          | 2.03                          | 2.58                                        | 126.22     |
|                                                        |           |               |                               |                                             |            |

 Table S3 The geometries of hydrogen bonds for 1 and 2.



**Fig. S1** The coordination condition in compound **1**. Symmetry codes: (A) 1+x, y, z; (B) -x, -0.5+y, 0.5-z; (C) 0.5+x, 0.5-y, 1-z; (D) 1-x, 0.5+y, 0.5-z; (E) -x, 0.5+y, 0.5-z; (F) 0.5-x, 1-y, 0.5+z.



**Fig. S2** The coordination condition in compound **2**. Symmetry codes: (A) x, -0.5-y, z; (B) x, 0.5-y, z; (C) 1-x, -y, 2-z; (D) -x, -0.5+y, 1-z; (E) 1+x, y, 1+z; (F) 1-x, -0.5+y, 2-z; (G) -x, 0.5+y, 1-z; (H) -x, -y, 1-z; (I) x, 1+y, z; (J) 1-x, 0.5+y, 1-z; (K) 1-x, -0.5+y, 1-z; (L) -x, -0.5+y, -z; (M) x, -1+y, z.



**Fig. S3** The hydrogen bonds (blue dashed lines) in (a) **1** and (b) **2**. Cu, Turquoise; P, Pink; O, red; H, gray. The Ba atoms in both compounds are omitted for clearity.



**Fig. S4** The experimental XRD patterns for compound **1** fitted by Rietveld method. The fitting crystal contants are a = 5.158 Å, b = 9.736 Å, c = 14.569 Å,  $\alpha = \beta = \gamma = 90^{\circ}$  with space group  $P2_12_12_1$ . Black, sample; red, calculated; blue, difference.



Fig. S5 Powder X-ray patterns of compound 2.



Fig. S6 Infrared spectrums (a) and TG curves (b) for 1 and 2.



**Fig. S7** The  $\chi_m^{-1}$  vs *T* curves for compounds **1** and **2**.



**Fig. S8** The  $\chi'_m$  vs *T* curves for compound **2** between 2 and 30 K at different static magnetic fields with  $H_{ac} = 3$  Oe and f = 1000 Hz.



**Fig. S9** Isothermal magnetization curves measured at 2, 2.5, 3, 3.5 4, 4.5, 5, 6, 8, 10 and 15 K for compound **2**.



**Fig. S10** The  $\chi_m T$  vs *T* curve for compound **2**.



**Fig. S11** Magnetic susceptibilities at external fields from 0.001 T to 8 T between 2 and 30 K for compound **2**.