Supporting information for

Tuning Different Kinds of Entangled Metal-organic Frameworks through Modifying the Spacer Group of Aliphatic Dicarboxylate Ligands and Reactant Ratio †

Jin-Xia Yang,^a Ji-Quan Zhai,^{ab} Xin Zhang,^a Ye-Yan Qin,^a Yuan-Gen Yao^{a,*}

Received (in XXX, XXX) Xth XXXXXXXX 201X, Accepted Xth XXXXXXXX 201X First published on the web Xth XXXXXXXX 201X DOI: 10.1039/b000000x

^a Key Laboratory of Coal to Ethylene Glycol and Its Related Technology,
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou
350002, P. R. China E-mail:yyg@fjirsm.ac.cn.
^b College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116 (P. R. China).

Tuble ST Beleeted colle	i lengens (i i) and a		
Cd(1)-N(2) ^a	2.321(3)	Cd(1)-O(3) ^b	2.330(3)
Cd(1)-O(1w)	2.330(3)	Cd(1)-N(1)	2.350(3)
Cd(1)-O(1)	2.374(3)	$Cd(1)-O(4)^{b}$	2.574(3)
Cd(1)-O(2)	2.584(3)		
N(2) ^a -Cd(1)-O(3) ^b	138.10(10)	$N(2)^{a}-Cd(1)-O(1w)$	90.71(12)
O(3) ^b -Cd(1)-O(1w)	90.51(10)	N(2) ^a -Cd(1)-N(1)	93.80(12)
$O(3)^{b}-Cd(1)-N(1)$	86.63(11)	O(1w)-Cd(1)-N(1)	175.43(10)
N(2) ^a -Cd(1)-O(1)	135.80(10)	$O(3)^{b}-Cd(1)-O(1)$	86.00(11)
O(1w)-Cd(1)-O(1)	91.77(10)	N(1)-Cd(1)-O(1)	84.48(11)
$N(2)^{a}-Cd(1)-O(4)^{b}$	85.40(9)	$O(3)^{b}-Cd(1)-O(4)^{b}$	52.94(9)
$O(1w)-Cd(1)-O(4)^{b}$	85.91(9)	N(1)-Cd(1)-O(4) ^b	95.18(10)
$O(1)-Cd(1)-O(4)^{b}$	138.79(9)	N(2) ^a -Cd(1)-O(2)	83.69(9)
O(3) ^b -Cd(1)-O(2)	138.21(10)	O(1w)-Cd(1)-O(2)	88.14(10)
N(1)-Cd(1)-O(2)	91.62(10)	O(1)-Cd(1)-O(2)	52.32(9)
$O(4)^{b}-Cd(1)-O(2)$	167.49(9)		

Table S1 Selected bond lengths (Å) and angles (°) for 1

Symmetry codes: (a): *x*, *y*, 1+*z*; (b) -2-*x*, 0.5+*y*, 0.5-*z*.

	a longens (11) and e			
Cd(1)-N(2) ^a	2.338(10)	Cd(1)-N(1)	2.340(11)	
Cd(1)-N(3)	2.369(12)	Cd(1)-O(4)	2.385(8)	
Cd(1)-O(2)	2.391(8)	Cd(1)-O(1)	2.447(8)	
Cd(1)-O(3)	2.462(9)			
$N(2)^{a}-Cd(1)-N(1)$	95.6(3)	N(2) ^a -Cd(1)-N(3)	91.7(4)	
N(1)-Cd(1)-N(3)	172.6(4)	N(2) ^a -Cd(1)-O(4)	138.6(3)	
N(1)-Cd(1)-O(4)	85.6(3)	N(3)-Cd(1)-O(4)	88.3(4)	
N(2) ^a -Cd(1)-O(2)	137.2(3)	N(1)-Cd(1)-O(2)	90.0(4)	
N(3)-Cd(1)-O(2)	85.2(4)	O(4)-Cd(1)-O(2)	84.0(3)	

N(2) ^a -Cd(1)-O(1)	84.8(3)	N(1)-Cd(1)-O(1)	85.3(4)	
N(3)-Cd(1)-O(1)	96.3(4)	O(4)-Cd(1)-O(1)	136.3(3)	
O(2)-Cd(1)-O(1)	53.3(3)	$N(2)^{a}-Cd(1)-O(3)$	84.9(3)	
N(1)-Cd(1)-O(3)	92.3(4)	N(3)-Cd(1)-O(3)	87.5(4)	
O(4)-Cd(1)-O(3)	53.8(3)	O(2)-Cd(1)-O(3)	137.4(3)	
O(1)-Cd(1)-O(3)				

Symmetry codes: (a): x, 1+y, z.

Table S3 Selected bond lengths (Å) and angles (°) for 3.

Tuble be beleeted bolld	ienguis (i i) una u		
Cd(1)-O(1w)	2.273(5)	Cd(1)-N(2) ^a	2.304(6)
Cd(1)-O(2)	2.339(5)	Cd(1)-N(1)	2.344(6)
Cd(1)-O(1)	2.440(5)	Cd(1)-O(7)	2.455(7)
Cd(1)-O(8)	2.565(7)	Cd(2)-O(6)	2.241(7)
Cd(2)-O(4)	2.318(6)	$Cd(2)-N(4)^{b}$	2.338(7)
Cd(2)-N(3)	2.355(6)	Cd(2)-O(2w)	2.357(8)
Cd(2)-O(3)	2.530(6)	O(1w)-O1	2.7543
O(1w)-Cd(1)-N(2) ^a	175.0(2)	O(1w)-Cd(1)-O(2)	89.6(2)
N(2) ^a -Cd(1)-O(2)	95.2(2)	O(1w)-Cd(1)-N(1)	88.76(19)
N(2) ^a -Cd(1)-N(1)	92.8(2)	O(2)-Cd(1)-N(1)	85.5(2)
O(1w)-Cd(1)-O(1)	89.75(18)	N(2) ^a -Cd(1)-O(1)	92.0(2)
O(2)-Cd(1)-O(1)	54.31(18)	N(1)-Cd(1)-O(1)	139.78(19)
O(1w)-Cd(1)-O(7)	87.7(2)	N(2) ^a -Cd(1)-O(7)	87.9(2)
O(2)-Cd(1)-O(7)	139.5(2)	N(1)-Cd(1)-O(7)	134.7(2)
O(1)-Cd(1)-O(7)	85.3(2)	O(1w)-Cd(1)-O(8)	87.6(2)
N(2) ^a -Cd(1)-O(8)	87.9(2)	O(2)-Cd(1)-O(8)	169.8(2)
N(1)-Cd(1)-O(8)	84.7(2)	O(1)-Cd(1)-O(8)	135.43(19)
O(7)-Cd(1)-O(8)	50.1(2)	O(6)-Cd(2)-O(4)	138.6(2)
O(6)-Cd(2)-N(4) ^b	97.8(3)	O(4)-Cd(2)-N(4) ^b	91.7(2)
O(6)-Cd(2)-N(3)	130.5(3)	O(4)-Cd(2)-N(3)	89.3(2)
N(4) ^b -Cd(2)-N(3)	90.6(2)	O(6)-Cd(2)-O(2w)	88.4(4)
O(4)-Cd(2)-O(2w)	82.7(3)	N(4) ^b -Cd(2)-O(2w)	173.6(3)
N(3)-Cd(2)-O(2w)	86.5(2)	O(6)-Cd(2)-O(3)	86.6(2)
O(4)-Cd(2)-O(3)	53.23(18)	N(4) ^b -Cd(2)-O(3)	88.9(2)
N(3)-Cd(2)-O(3)	142.5(2)	O(2w)-Cd(2)-O(3)	90.0(2)
O(1w)-H1wb…O1	171		

Symmetry codes: (a): 0.5-*x*, -0.5+*y*, 0.5-*z*; (b): 0.5-*x*, 0.5+*y*, 0.5-*z*.

Table S4 Selected bond lengths (Å) and angles (°) for 4.

	0 ()	0 ()	
Cd(1)-N(2) ^a	2.369(7)	Cd(1)-N(3)	2.379(8)

Cd(1)-O(4) ^b	2.400(6)	Cd(1)-N(1)	2.404(7)
Cd(1)-O(2)	2.417(6)	Cd(1)-O(1)	2.424(6)
Cd(1)-O(3) ^b	2.442(6)		
N(3)-Cd(1)-O(4) ^b	89.1(3)	N(2) ^a -Cd(1)-N(1)	93.2(2)
N(3)-Cd(1)-N(1)	88.5(3)	$O(4)^{b}-Cd(1)-N(1)$	83.0(2)
N(2) ^a -Cd(1)-O(2)	90.1(2)	N(3)-Cd(1)-O(2)	89.2(2)
O(4) ^b -Cd(1)-O(2)	141.5(2)	N(1)-Cd(1)-O(2)	135.4(2)
N(2) ^a -Cd(1)-O(1)	90.7(2)	N(3)-Cd(1)-O(1)	90.3(3)
O(4) ^b -Cd(1)-O(1)	164.6(2)	N(1)-Cd(1)-O(1)	81.7(2)
O(2)-Cd(1)-O(1)	53.9(2)	N(2) ^a -Cd(1)-O(3) ^a	88.9(2)
N(3)-Cd(1)-O(3) ^b	89.4(2)	$O(4)^{b}-Cd(1)-O(3)^{b}$	53.6(2)
N(1)-Cd(1)-O(3) ^b	136.6(2)	O(2)-Cd(1)-O(3) ^b	87.89(19)
O(1)-Cd(1)-O(3) ^b	141.75(19)		

Symmetry codes: (a): 0.5+*x*, 0.5+*y*, *z*; (b): 0.5-*x*, 0.5+*y*, -0.5-*z*.

Cd(1)-O(3)	2.272(4)	Cd(1)-N(1)	2.334(5)
Cd(1)-N(2) ^a	2.361(5)	Cd(1)-N(3)	2.390(5)
Cd(1)-O(2)	2.443(4)	Cd(1)-O(1)	2.488(5)
Cd(1)-O(4)	2.744(5)		
O(3)-Cd(1)-N(1)	90.18(18)	O(3)-Cd(1)-N(2) ^a	137.62(16)
N(1)-Cd(1)-N(2) ^a	88.21(19)	O(3)-Cd(1)-N(3)	87.25(17)
N(1)-Cd(1)-N(3)	177.17(19)	$N(2)^{a}-Cd(1)-N(3)$	94.50(19)
O(3)-Cd(1)-O(2)	139.51(15)	N(1)-Cd(1)-O(2)	95.23(17)
N(2) ^a -Cd(1)-O(2)	82.74(16)	N(3)-Cd(1)-O(2)	85.96(16)
O(3)-Cd(1)-O(1)	87.12(16)	N(1)-Cd(1)-O(1)	92.20(17)
N(2) ^a -Cd(1)-O(1)	135.26(16)	N(3)-Cd(1)-O(1)	86.47(18)
O(2)-Cd(1)-O(1)	92.72(18)	O(3)-Cd(1)-O(4)	50.67(14)
N(1)-Cd(1)-O(4)	92.72(18)	N(2) ^a -Cd(1)-O(4)	87.10(15)
N(3)-Cd(1)-O(4)	86.58(17)	O(2)-Cd(1)-O(4)	166.87(14)
O(1)-Cd(1)-O(4)	137.48(14)		

 $\overline{\text{Symmetry codes: (a): } 0.5+x, 0.5+y, z.}$

	Table S6	Selected	bond	lengths	(Å)	and	angles ((°)	for 6 .
--	-----------------	----------	------	---------	-----	-----	----------	-----	----------------

I able 50 Selected 50	she lengths (11) and		
Cd(1)-O(1w)	2.338(3)	Cd(1)-N(1)	2.382(3)
Cd(1)-O(2)	2.389(2)	Cd(1)-O(4)	2.397(3)
Cd(1)-N(3)	2.419(3)	Cd(1)-O(1)	2.446(2)
Cd(1)-O(3)	2.451(3)	Cd(2)-O(2w)	2.341(3)
Cd(2)-N(4)	2.359(3)	Cd(2)-N(2) ^a	2.362(3)
Cd(2)-O(6)	2.368(2)	Cd(2)-O(7)	Cd(2)-O(7)

Cd(2)-O(8)	2.508(3)	Cd(2)-O(5)	2.510(3)
O(1w)-Cd(1)-N(1)	81.37(9)	O(1w)-Cd(1)-O(2)	143.40(9)
N(1)-Cd(1)-O(2)	100.25(9)	O(1w-Cd(1)-O(4)	130.60(10)
N(1)-Cd(1)-O(4)	84.67(9)	O(2)-Cd(1)-O(4)	85.68(9)
O(1w)-Cd(1)-N(3)	79.16(10)	N(1)-Cd(1)-N(3)	157.22(9)
O(2)-Cd(1)-N(3)	88.57(9)	O(4)-Cd(1)-N(3)	117.15(10)
O(1w)-Cd(1)-O(1)	90.14(9)	N(1)-Cd(1)-O(1)	83.87(9)
O(2)-Cd(1)-O(1)	54.16(8)	O(4)-Cd(1)-O(1)	135.04(8)
N(3)-Cd(1)-O(1)	84.46(9)	O(1w)-Cd(1)-O(3)	87.51(9)
N(1)-Cd(1)-O(3)	109.03(9)	O(2)-Cd(1)-O(3)	124.99(9)
O(4)-Cd(1)-O(3)	53.28(8)	N(3)-Cd(1)-O(3)	81.89(9)
O(1)-Cd(1)-O(3)	166.35(8)	O(2w)-Cd(2)-N(4)	86.61(10)
O(2w)-Cd(2)-N(2) ^a	81.82(10)	N(4)-Cd(2)-N(2) ^a	168.38(10)
O(2w)-Cd(2)-O(6)	138.67(9)	N(4)-Cd(2)-O(6)	86.14(9)
N(2) ^a -Cd(2)-O(6)	103.19(9)	O(2w)-Cd(2)-O(7)	84.59(9)
N(4)-Cd(2)-O(7)	86.89(9)	N(2) ^a -Cd(2)-O(7)	91.07(9)
O(6)-Cd(2)-O(7)	135.44(9)	O(2w)-Cd(2)-O(8)	133.78(10)
N(4)-Cd(2)-O(8)	106.62(9)	N(2) ^a -Cd(2)-O(8)	81.06(10)
O(6)-Cd(2)-O(8)	87.12(8)	O(7)-Cd(2)-O(8)	53.28(8)
O(2w)-Cd(2)-O(5)	88.73(9)	N(4)-Cd(2)-O(5)	100.44(9)
N(2) ^a -Cd(2)-O(5)	80.32(9)	O(6)-Cd(2)-O(5)	52.95(8)
O(7)-Cd(2)-O(5)	169.78(9)	O(8)-Cd(2)-O(5)	129.63(8)

Symmetry codes: (a): x, y, -1+z.

Figure S1. The simulated and experimental XRD patterns of each compound (a) for 1, (b) for 2, (c) for 3, (d) for 4, (e) for 5, and (f) for 6.

Figure S2. TG curves of compounds 1-6.