Electronic Supplementary Information (ESI) †

Structural, Electrochemical and Spectroelectrochemical

Study on the Geometric and Electronic Structures of

[(corrolato)Au^{III}]ⁿ (n = 0, +1, -1) Complexes

Woormileela Sinha,^a Michael G. Sommer,^b Margarethe van der Meer,^b Sebastian Plebst,^c Biprajit Sarkar,^{*b} and Sanjib Kar^{*a}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 751005, India, E-mail: sanjib@niser.ac.in ^bInstitut für Chemie und Biochemie, Anorganische Chemie, Fabeckstraße 34-36, D-14195, Berlin, Germany, E-mail: biprajit.sarkar@fu-berlin.de ^cInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany

- Table S1Crystallographic Data for 2
- Table S2UV-vis. and electrochemical data
- Fig. S1 ESI-MSspectrum of (a) 10-(2,4,5-trimethoxyphenyl)-5,15-bis(4-cyanophenyl)corrolato-Au(III), 1, and (b) 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4-cyanophenyl) corrolato-Au(III), 2 inCH₃CN shows the measured spectrum with isotopic distribution pattern.
- **Fig. S2** ¹H NMR spectrum of 10-(2,4,5-Trimethoxyphenyl)-5,15-bis(4cyanophenyl)corrolato- Au(III), **1** in CDCl₃.
- **Fig. S3** ¹H NMR spectrum of 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4cyanophenyl) corrolato- Au(III), **2** in CDCl₃.
- **Fig. S4** ¹³C NMR spectrum of 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4cyanophenyl)corrolato-Au(III), **2** in CDCl₃.
- Fig. S5 ORTEP diagram of 2. Ellipsoids are drawn at 50% probability.
- Fig. S6 Orientation of gold atoms in the single-crystal X-ray structure of 2.
- Fig. S7 X-band EPR spectrum of a) (2)⁺ with simulation and b) (2)⁻ generated by *in-situ* electrolysis at 295 K in $CH_2Cl_2/0.1$ M Bu_4NPF_6 .
- Fig. S8 Electronic absorption spectrum of 10-(2,4,5-trimethoxyphenyl)-5,15-bis(4-cyanophenyl)corrolato-Au(III), 1, (red line) and 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4-cyanophenyl)corrolato-Au(III), 2, (blue line)in CH₂Cl₂. (Color online.)
- Fig. S9 Change in the UV-Vis spectrum of 2 during a) first oxidation and b) first reduction. Result from OTTLE spectroelectrochemistry in CH_2Cl_2 /0.1 M Bu_4NPF_6 .
- **Fig. S10** The calculated absorption spectra for **1**, showing the TD-DFTcalculated electronic transitions.
- **Fig. S11** The calculated absorption spectra for 1⁺, showing the TD-DFTcalculated electronic transitions.

- **Fig. S12** The calculated absorption spectra for 1⁻, showing the TD-DFTcalculated electronic transitions.
- **Fig. S13** The calculated absorption spectra for **2**, showing the TD-DFT calculated electronic transitions.
- **Fig. S14** The calculated absorption spectra for **2**⁺, showing the TD-DFTcalculated electronic transitions.
- **Fig. S15** The calculated absorption spectra for **2**⁻, showing the TD-DFTcalculated electronic transitions.

molecular formula	C ₄₅ H ₂₇ Au N ₆ O ₂ , C ₆ H ₆	
Fw	958.83	
Radiation	ΜοΚα	
crystal symmetry	Triclinic	
space group	P-1	
a(Å)	8.6926 (9)	
b(Å)	15.5671 (16)	
$c(\text{\AA})$	15.6537 (16)	
a(deg)	106.257(3)	
β (deg)	106.034(3)	
γ(deg)	95.639(3)	
$V(Å^3)$	1918.7(3)	
Ζ	2	
μ (mm ⁻¹)	3.887	
<i>T</i> (K)	100 K	
$D_{\text{calcd}}(\text{g cm}^{-3})$	1.660	
2θ range (deg)	2.78 to 50.70	
$e \text{ data } (R_{\text{int}})$	6891 (0.0451)	
R1 (<i>I</i> >2σ(<i>I</i>))	0.0432	
WR2	0.1195	
GOF	0.995	

Table S2UV-vis. and electrochemical data

Compound	UV–vis. Data ^{<i>a</i>}	Electrochemical data ^{<i>a,b</i>}	
	$\lambda_{\text{max}} / \text{nm} (\epsilon / M^{-1} \text{cm}^{-1})$		-
		Oxidation	Reduction
		$E^{0}, V (\Delta E_{p}, mV)$	$E^{0}_{,v} V (\Delta E_{p}, mV)$
1	422 (1,61,500) 494 (4,700)	0.39(70)	-1.81(80)
	530 (10,700)	0.72(80)	-2.17(80)
	574 (41,500)		
2	423 (1,42,200)	1.70(00)	
	494 (3,700)	0.42(70)	-1./8(80)
	533 (9,300)	0.79(80)	-2.13(80)
	572 (37,000)	0.79(00)	

^{*a*}In dichloromethane / 0.1 M TBAP.

^bThepotentials are vs.*Fc/Fc*⁺.

Fig. S1 ESI-MSspectrum of (a) 10-(2,4,5-trimethoxyphenyl)-5,15-bis(4cyanophenyl)corrolato-Au(III), 1, and (b) 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4-cyanophenyl) corrolato-Au(III), 2 inCH₃CN shows the measured spectrum with isotopic distribution pattern.

cyanophenyl)corrolato- Au(III), 1 inCDCl₃.

cyanophenyl) corrolato- Au(III), 2 in CDCl₃.

Fig. S413C NMR spectrum of 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4-
cyanophenyl)corrolato-Au(III), 2 in CDCl3.

Fig. S5 ORTEP diagram of 2. Ellipsoids are drawn at 50% probability.

Fig. S6 Orientation of gold atoms in the single-crystal X-ray structure of 2.

Fig. S7X-band EPR spectrum of a) $(2)^{++}$ with simulation and b) $(2)^{--}$ generated by *in-situ*
electrolysis at 295 K in CH₂Cl₂/0.1 M Bu₄NPF₆.

Fig. S8 Electronic absorption spectrum of 10-(2,4,5-trimethoxyphenyl)-5,15-bis(4-cyanophenyl)corrolato-Au(III), 1, (red line) and 10-(4,7-dimethoxynaphthalen-1-yl)-5,15-bis(4-cyanophenyl)corrolato-Au(III), 2, (blue line)in CH₂Cl₂. (Color online.)

Fig. S9 Change in the UV-Vis spectrum of 2 during a) first oxidation and b) first reduction. Result from OTTLE spectroelectrochemistry in CH_2Cl_2 /0.1 M Bu_4NPF_6 .

Fig. S10 The calculated absorption spectra for **1**, showing the TD-DFTcalculated electronic transitions.

Fig. S11 The calculated absorption spectra for 1⁺, showing the TD-DFTcalculated electronic transitions.

Fig. S12The calculated absorption spectra for 1⁻⁻, showing the TD-DFTcalculated
electronic transitions.

Fig. S13 The calculated absorption spectra for **2**, showing the TD-DFTcalculated electronic transitions.

Fig. S14The calculated absorption spectra for 2+, showing the TD-DFTcalculated
electronic transitions.

Fig. S15 The calculated absorption spectra for 2⁻, showing the TD-DFTcalculated electronic transitions.