Electronic Supporting Informations

Tuned synthesis of two coordination polymers of Cd(II) using substituted bent 3-pyridyl linker and succinate: structures and their applications in anion exchange and sorption properties

Dilip Kumar Maity, Biswajit Bhattacharya, Arijit Halder and Debajyoti Ghoshal^{†*} Department of Chemistry, Jadavpur University, Jadavpur, Kolkata, 700 032, India

Fig. S1 FT-IR spectra of complexes 1-2.

Fig. S2 GC trace of the 3-bpdh ligand in reaction medium at time interval 13.31 mins. The peak indicated above was identified by GC-MS spectra (see below).

Fig. S3 Mass spectrum of the peak at 10.37 min showing the value at 238.4266 of 3-bpdh ligand in reaction mixture.

Fig. S4 ESI mass spectrum of yellow residue in reaction mixture.

Fig. S5 ESI mass spectrum of pure 3-bpdh ligand.

Fig. S6 (a) 3D porous framework showing 1D chanel of guest water molecules along *a*-axis. (b) Supramolecular 3D structure through intramolecular π - π interactions in 2 (π - π interactions: cyan dotted lines).

Fig. S7 PXRD spectra of (a) simulated and as synthesized of 1; (b) Simulated, as synthesized, activated at 130 °C.

Fig. S8 Thermogravimetric analysis of 2 in the temperature range 30-600 °C.

Fig. S9 Combined IR spectra of the filtrate after anion-exchange with the corresponding anions which show the presence of perchlorate ions in all the cases.

Fig. S10 Combined PXRD spectra of complex 1 and its anion-exchanged solids showing slight changes with highlighted bands.

Fig. S11 LeBail fitting of X-ray powder pattern of 1@NO₃.

Fig. S12 Photoluminescence spectra of complexes 1-2 with free 3-bpdh ligand.

Fig. S13 (a, b, c) Space filling model of 2 viewed along crystallographic a, b and c-axis respectively (guest water molecules are removed for clarity).

Fig. S14 N_2 adsorption isotherms for 2 at 77K: adsorption (filled squares), desorption (open squares).

2	$ring(i) \rightarrow ring(j)$	distance of	dihedral angle	Distance between	
		centroid(i) from	(i,j) (deg)	the (i,j) ring	
		ring(j),(Å)		centroids,(Å)	
	$R(1) \rightarrow R(1)^i$	3.685(3)	8	3.4358(11)	
	$R(1) \rightarrow R(1)^{ii}$	3.685(3)	8	-3.5759(11)	
	$R(2) \rightarrow R(2)^{i}$	4.000(3)	1	3.5263(12)	
	$R(2) \rightarrow R(2)^{ii}$	4.000(3)	1	3.5591(12)	

Symmetry code: i = -1/2+X, -1/2-Y, Z; ii = 1/2+X, -1/2-Y, Z.

R(i)/R(j) denotes the ith/jth rings in the corresponding structures: R(1)=N(1)/C(1)/C(2)/C(3)/C(4)/C(5); R(2)=N(4)/C(10)/C(11)/C(12)/C(13)/C(14).

	1	1@NO ₃
Crystal system	Monoclinic	Monoclinic
Space group	P21/n	P21/m
<i>a</i> / Å	8.840	8.8339
<i>b</i> / Å	17.934	17.8997
<i>c</i> / Å	10.458	10.4245
α/°	90.000	90
β/°	98.701	98.89
γ/°	90.000	90
V/ Å ³	1638.9	1628.58

Table S2 Comparison of cell parameter of 1 with the indexed cell parameter (using TREOR90 programme) 1@NO3 from the powder data