Supplementary information In-situ photo-assisted deposition and photocatalysis of ZnIn₂S₄/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light

Wei Yang Lim,^a Minghui Hong^a Ghim Wei Ho*^{a,b}

^aDepartment of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.

^bInstitute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, 117602, Singapore.

Fig. S1 EDX of (a) 1 wt% and (b) 5 wt% Ag_2S - $ZnIn_2S_4$ (c) 2 wt% (d) 5 wt% CuS- $ZnIn_2S_4$ (e) 3.5 wt% and (f) 5 wt% MoS_2 - $ZnIn_2S_4$. Insets showed the measured wt% loadings along with the magnified energy range to resolve the co-catalyst characteristic peak due to low loading amount.