Supporting Information

Interplay Between Singlet and Triplet Excited States in a Conformationally Locked Donor-Acceptor Dyad

Mikhail A. Filatov,^{a,b*} Fabian Etzold,^a Dominik Gehrig,^a Frédéric Laquai,^{a,c} Dmitri Busko, ^a Katharina Landfester,^a and Stanislav Baluschev^{a,d,e}

^a Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany

^b Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., block 103-A, BG - 1113 Sofia, Bulgaria

e-mail: filatovm@tcd.ie

^c Physical Sciences and Engineering Division (PSE), Material Science and Engineering (MSE), Solar and Photovoltaics Engineering Research Center (SPERC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia

^d Optics and Spectroscopy Department, Faculty of Physics, Sofia University "St. Kliment Ochridski", 5 James Bourchier, 1164 Sofia, Bulgaria

^e Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstraße 19, D-79104 Freiburg, Germany

NMR and mass-spectra	2-9
Optical spectra	10-16
Transient absorption spectra	17-18

NMR and mass-spectra

Figure S2. ¹³C NMR specrum of 2 (75 MHz, CD₂Cl₂, 298 K).

Figure S4. ¹³C NMR specrum of 3 (75 MHz, CD₂Cl₂, 298 K).

Figure S6. ¹³C NMR specrum of 4 (63 MHz, CD₂Cl₂, 298 K).

Figure S8. ¹³C NMR specrum of 5 (63 MHz, CD₂Cl₂, 298 K).

Figure S11. ¹H NMR specrum of 8 in a free-base form (250 MHz, CD₂Cl₂, 298 K).

Figure S12. ¹H NMR specrum of 8 in a protonated form (250 MHz, CD₂Cl₂, 298 K).

Figure S14. MALDI TOF spectrum 8 (positive mode). Experimentally seen clusters correspond to [M] and [M+K]⁺ species.

11.5 11.0 10.5 10.0 6.0 5.5 5.0 f1 (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.5 4.0

Figure S16. MALDI TOF spectrum of 9 (positive mode).

Optical spectra

Figure S17. Optical spectra of 5,12-dimethoxy-1,4-dihydro-1,4-ethanotetracene (3) in comparison with 9,10diphenylanthracene.

Figure S18. Fit of the fluorescence decay for compound 3.

Figure S19. Emission spectrum of 3 at 77 K in methyltetrahydrofuran.

Figure S20. Optical spectra of porphyrin 8 (10⁻⁶ M) compared with those of octaethylporphyrin free base.

Figure S21. Optical spectra of porphyrin 9 ($5x10^{-6}$ M) compared with those of PdOEP.

Figure S22. Porphyrin **9** (10⁻⁵ M) emission lifetimes at different wavelengths, measured using different optical filters.

Figure S23. Emission spectrum of the mixture PdOEP – 3 in 1:4 ratio.

Figure S24. Comparison of the upconversion spectra of the systems based on porphyrin **9** or PdOEP as sensitizers and anthracene **3** as an emitter in 1:5 ratio. Samples were excited at 545 nm (10 mWcm⁻²).

Figure S25. Upconversion spectra of samples containing 3.10⁻⁵ M of **9** and 1, 2 or 5 equivalents of **3** as an emitter (solvent – toluene). Samples were excited at 545 nm (10 mWcm⁻²).

Transient absorption spectra

Figure S26. Component spectra of singlet and triplet states of PdOEP (10⁻⁴ M) obtained by global analysis.

Figure S27. Component spectra of compound 9 (10⁻⁴ M) obtained by global fitting.

Figure S28. ns-µs Vis-NIR TA spectra of compound 9 (10⁻⁴ M).

Figure S29. ns-µs dynamics obtained on compound **9** at selected wavelength regions corresponding to the porphyrin's ground state bleach (540-542 nm), the region of stimulated emission from the porphyrin (585-595 nm) and the triplet-induced absorption (700-750 nm).